limf(x)=1,证明f(x)[o,]上有界
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 11:06:53
对的,当x趋于-1时,f(x)的左极限趋向正无穷,右极限趋向负无穷.
由于x趋向0时lim(1+x)^1/x=e将题目所给的构造成这个形式就好limf(x)^g(x)==lim[1+(f(x)-1)]^[1/((f(x)-1)*g(x)*(f(x)-1)=e^g(x)[
且limfx=A与limfx=B这句话有点问题,是不是题错了,题上有没有说a不等于b的?再问:左边是X趋向a,右边是趋向正无穷
http://hi.baidu.com/zjhz8899/album/item/358d923fc492f21071cf6c01.html
由limf(x)/x=1知f(0)=0且f'(0)=1.令g(x)=f(x)-x有g(0)=0g'(x)=f'(x)-1g'(0)=0g''(x)=f''(x)>0所以g(x)>=0,证毕
证:令limf(x)=Alimg(x)=B所以f(x)=A+@g(x)=B+@,@为无穷小lim[f(x)+g(x)]=lim[A+@+B+@]=A+B而limf(x)+limg(x)=A+Blim[
再问:再问:我这么写对么再答:可以。再问:嗯谢谢
lim(x→a)f(x)-f(a)/x-a=f'(a)f(x)=1/xf'(x)=-1/x^2f'(a)=-1/a^2再问:第一步我懂了...最后那两个怎么得出来的?f'(x)和f'(a)再答:f'(
这个不是个公式么证明比较难打出来,楼主去看高数教材好了,里面有的.同济五版的是在44页
lim(f(2x)-f(x))/x=0所以对于任意ε,存在δ,-δ
由lim(x→a)f(x)=|A|,对于任意的ε>0,存在δ>0,当0<|x-a|<δ时,恒有|f(x)-|A||<ε.所以||f(x)|-|A||≤|f(x)-|A||<ε,当0<|x-a|<δ时,
∵f''(x)>0.f(x)应当连续,从limf(x)/x=1,f(0)=0.且limf(x)/x=lim[(f(x)-f(0))/(x-o)]=f′(0)=1.令g(x)=f(x)-x.g(0)=0
以x→∞为例证明.x→a的情况可类似证明.对任意的ε>0.因为limf(x)=A,所以存在X>0.当|x|>X时,有|f(x)|>|A|/2,且|f(x)-A|
这是极限四则运算法则和复合运算规则要求limg(x)和limf(g(x))均存在即可再问:大神,能细证吗?老师上课时说过这是公式成立条件他说定义法可证明啊再答:哥们,这是高等数学中的定理就连考研数学也
(1)F'(x)=1/x^2∵0时∴F'(x)(0,+∞)不变建立一个∴F(x)在(0,+∞)上单调递增(2)函数f(x)在(0,+∞)连续所述→0+limf(x)=-∞所述→∞:limf(x)=+∞
若A=0,则由lim(x→a)f(x)=0,对于任意的ε>0,存在δ>0,当0<|x-a|<δ时,恒有|f(x)|<ε^2.所以,当0<|x-a|<δ时,|√f(x)|<ε所以,lim(x→a)√f(
在[x,x+1]上,用拉格朗日中值定理f(x+1)-f(x)=f'(ξ)*1x=lim(x->+∞)f'(ξ)=lim(ξ->+∞)f'(ξ)lim(x->+∞)f'(x)=0再问:lim【f(x+1