limun =0是级数∑un收敛的
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 08:01:18
级数收敛的必要条件是一般项的极限为0.即lim(Un-1)=0,所以lim(Un)=1.再问:问一下为什么∫xdx=∫1dx再问:应该是∫xdlnx为什么等于∫1d x再答:再问:为什么l
用比较判别法证明.经济数学团队帮你解答.请及时评价.
正项级数Sn-S(n-1)=un>0,即Sn>S(n-1),所以un/Sn^2
级数定理.是无穷求和的,通项趋于0,得到级数收敛.不用管(-1)^n项,趋于0,不会因为正负而改变.前项大于后项是不包括那符号的,级数收敛的必要条件,得递减嘛
你有问题也可以在这里向我提问:
∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛
这道题考察级数的两个性质:1.任意加上或去掉级数的有限想不改变它的收敛性.2.若级数∑an收敛,级数∑bn收敛,则级数∑(an+bn)也收敛.通项拆为两部分Un和U(n+1),已知∑Un收敛,而∑U(
对于正项级数来说是成立的,但对于任意项级数来说则不一定成立了再问:能举个例子吗?再答:比如说级数un=(-1)^n/√n显然交错级数收敛而vn=(-1)^n/√n+1/n易知limvn/un=1但vn
设NUn再问:高手,下边也写出来呗,要步骤,这部分没看呢,要考试啦!再答:∑1/N^2就是收敛的啊
参考例题:证明:如果正级数∑Un收敛,则∑Un^α(α>1)收敛答案:∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛
limun=a等价于:任意ε>0,存在N,使得当n>N时,|un-a|0,存在N,使得当n>N时,|(un-a)-0|
设数列收敛于t那么有lim[n->∞]U[n]=t且lim[n->∞]U[n+k]=lim[(n+k)->∞]U[n+k]=t所以n->∞时,limU[n]=limU[n+k]
∑【un+un+1】收敛于2s-u1再问:怎么做的呢?解释下理由好吗?谢谢再答:∑【un+un+1】=∑(n从1到∞)un+∑(n从1到∞)un+1=s+∑(n从1到∞)un+1(后面相当于从u2开始
再问:这是分开的两题........第二题和第一题无关.............能麻烦给下第二题的解答吗谢谢!
是发散的,可以用级数收敛的必要条件来判断.经济数学团队帮你解答.请及时评价.
下面所有lim均指n趋于正无穷大时由limUn=a,则任取ε>0,存在N,使得任意n>N有|Un-a|N有||Un|-|a||
这是错的.比如Un=1/n
不一定,判定一个涵数收敛除了极限,还有定义域.两个条件缺一不可
这个级数是收敛的,而且由于是正数,还是绝对收敛的,因为ln(n+1)比n小很多,就是说它的增长速度非常小,(lnn)/n趋于0当n趋于无穷时,可以把原式除以1/n^2,这个是收敛的,而且比值是0,所以
只要举出反例即可.令U(n)=(-1)^n/ln(n+1)(+1是为了保证n=1时有意义),则U(n)是趋于零的交错数列,所以由Leibnitz判别法知∑U(n)收敛.(-1)^n*U(n)/n=1/