limun不等于0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:19:56
要不这样:|sin(pi)|
sinx≠0,∴x的终边不在x轴上tanx≠0,∴sinx≠0,cosx≠0,∴x的终边不在坐标轴上∴x的终边不在坐标轴上,∴x≠k兀/2,k∈Z
级数收敛的必要条件是一般项的极限为0.即lim(Un-1)=0,所以lim(Un)=1.再问:问一下为什么∫xdx=∫1dx再问:应该是∫xdlnx为什么等于∫1d x再答:再问:为什么l
0乘任何数都等0
limUn=a由定义,得到:任意ε>0,存在N,当n>N,有|Un-a|
∵limUn=a∴根据极限定义知,对任意ε>0,存在N>0,当n>N时,有│Un-a│
级数定理.是无穷求和的,通项趋于0,得到级数收敛.不用管(-1)^n项,趋于0,不会因为正负而改变.前项大于后项是不包括那符号的,级数收敛的必要条件,得递减嘛
“若ab等于0,则a等于0,或b等于0”注意且或之间的否定关系
a=-3b-a/b=33的3次方=27
参考例题:证明:如果正级数∑Un收敛,则∑Un^α(α>1)收敛答案:∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛
limun=a等价于:任意ε>0,存在N,使得当n>N时,|un-a|0,存在N,使得当n>N时,|(un-a)-0|
充要条件.再答:a^3+b^3+ab-a^2-b^2=(a^2-ab+b^2)(a+b-1)
设数列收敛于t那么有lim[n->∞]U[n]=t且lim[n->∞]U[n+k]=lim[(n+k)->∞]U[n+k]=t所以n->∞时,limU[n]=limU[n+k]
“a不等于1且b不等于1”是“a+b不等于0”的无关命题再问:a+b不等于0不可以推出a不等于1且b不等于-1吗再答:可是你给的命题是“a不等于1且b不等于1再问:我现在已经明白了,谢谢你
解向量有两个属性,既有大小,又有方向,而数字0仅有大小,没有方向,即向量a≠0当时向量a可以=0向量.再问:那为什么向量a乘以向量b可以等于0再答:向量a乘以向量b的说法是错误的是向量a点乘向量b而向
ab不等于0说明a,b都不能为0.求逆否命题不过是把原命题逆过来再否定.a不等于0或者b不等于0的逆命题是b不等于0或者a不等于0.然后,b不等于0或者a不等于0的否命题是a等于0并且b等于0.
不一定,判定一个涵数收敛除了极限,还有定义域.两个条件缺一不可
当然是不等于了,一见钟情那是喜欢,日久生情那是爱
不清楚了.不过如果在极限方面的话,对0和无穷相乘求极限,可能不为0
(-∞,-1)∪(-1,0)∪(0,+∞)再问:那x≠-1就是(-∞,-1)U(-1,+∞)这样吗?再答:聪明正确