limun趋近于0是对un从零至无穷求和收敛的必要条件

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 16:09:02
limun趋近于0是对un从零至无穷求和收敛的必要条件
f(x)=(ln|x|/|x-1|)sinx为什么当X趋近于0时极限是零?

首先x-1这一项不重要,因为x->0时它有极限为1.sin(x)和x是同阶无穷小,只要说明x*ln|x|趋向于0.可以直接用洛必达法则:limx*ln|x|=lim(ln|x|)'/(1/x)'=li

f(x)=ln|x|/|x-1|sinx为什么当X趋近于0时极限是零?

相当于算ln|x|/x注意到|x|^x当x趋于0是趋于1的所以得到答案再问:还是不懂,f(x)=ln|x|/|x-1|sinx和ln|x|/x有什么关系啊?要有关系也是和ln|x|/(x-1)有关系啊

抽样脉冲趋近于零,抽样信号经低通后能否复原

抽样脉冲的宽度趋近于0,这正是对抽样脉冲的要求.不是幅度趋近于0.抽样信号变为一系列离散点,经低通滤波器(截止频率

求cotx-1/x 的极限,x 趋近于零

原式=lim{x->0}1/tanx-1/x=lim{x->0}(x-tanx)/xtanx=lim{x->0}(x-tanx)/x^2=lim{x->0}(1-sec^2x)/2x=lim{x->0

级数(Un-1)收敛'则limUn的值为什么是1

级数收敛的必要条件是一般项的极限为0.即lim(Un-1)=0,所以lim(Un)=1.再问:问一下为什么∫xdx=∫1dx再问:应该是∫xdlnx为什么等于∫1d x再答:再问:为什么l

sinx-x/x^3趋近于0的极限是?

该极限是0/0型的先用罗比达法则lim(sinx-x)/x^3=lim(cosx-1)/3x^2=lim(-x^2/2)/3x^2=-1/6利用了无穷小等价代换cosx-1=-x^2/2

若当n趋向于无穷时,limun=a,证明:当n趋向于无穷时lim|un|=|a|

由limun=a,知对于任意的e>0,存在自然数k0,使得n>k0时,有|un-a|k0时,||un|-|a||小于等于|un-a|

设limUn=a,若a不为零,试用定义证明:limUn+1/Un=1

limUn=a由定义,得到:任意ε>0,存在N,当n>N,有|Un-a|

一道函数极限问题当x趋近于零的时候,函数sinx^2/x的值是多少?是0还是1?为什么?

根据洛必达法则,分子分母同时求导,得原式=2xsinx^2/1,因为x趋近于零,所以原式=0.

证明当分母趋近于零,分子趋近于一个不为零的常数时,函数的极限是无穷大.

可以这么想,当分子一定时,分母(按正的来说)越小分数值就越大,当分母趋近于零时,也便是正数中最小的了,分数值自然就趋向于无穷大喽

交错级数莱布尼茨定理如题,莱布尼茨定理为Un>U(n+1),limUn=0,级数收敛,级数通项(-1)^(n-1)Un,

级数定理.是无穷求和的,通项趋于0,得到级数收敛.不用管(-1)^n项,趋于0,不会因为正负而改变.前项大于后项是不包括那符号的,级数收敛的必要条件,得递减嘛

证明若级数∑un满足(1)limun=0,(2)∑(u2n-1+u2n)收敛,则∑un收敛

参考例题:证明:如果正级数∑Un收敛,则∑Un^α(α>1)收敛答案:∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛

证明limun=a的充分必要条件是lim(un-a)=0

limun=a等价于:任意ε>0,存在N,使得当n>N时,|un-a|0,存在N,使得当n>N时,|(un-a)-0|

设数列{Un}收敛,则n→∞时limUn=limUn+k是否成立

设数列收敛于t那么有lim[n->∞]U[n]=t且lim[n->∞]U[n+k]=lim[(n+k)->∞]U[n+k]=t所以n->∞时,limU[n]=limU[n+k]

0乘无穷型求极限x从正方向趋近于0时,xlnx趋近于多少?

limxlnx=limlnx/(1/x)=lim(1/x)/(-1/x²)=lim-x=0

极限lim f(x)x趋近于零,存在的充分必要条件是?

海涅定理:对任意序列{xn}趋近于0,其函数值序列{f(xn)}有同一个极限limf(x)x趋近于零.

一个函数极限的问题如果一个函数在负无穷到零单调递减,在零到一单调递增,并且在x等于1是取最大值1,问x从左侧趋近于1时函

下面回答“函数有无极限和函数是否单调有没有关系”:结论是,没有关系,二者彼此不能互推.例,函数f(x)=1/x在(-1,0)单调递减,但是极限Lim(x→0左侧)不存在.关于这个方面,也可以这样思考,

若limun=0 则级数∑un 收敛么

不一定,判定一个涵数收敛除了极限,还有定义域.两个条件缺一不可