limx(e2 x-1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 17:22:25
limx(e2 x-1)
limx ln(1+1/x^2) 求极限?

当x趋于无穷大时limxln(1+1/x^2)=lim[ln(1+1/x^2)]/(1/x)运用洛必达法则=lim(1/[1+(1/x²)])*(-2/x³)/(-1/x²

limx趋于0 ((1+x)^(1/x)-e)/sinx 极限

解 =-e/2.这题的后半部分也可用罗比达法则计算.

limx趋向0 ln(1+x)/x

由于上下在x趋向0时都趋向0所以可以利用洛比塔法则limx趋向0ln(1+x)/x=limx趋向0(ln'(x+1)/x')=limx趋向0(1/(1+x))=1

limx*[ln(1+x)-lnx]

lim(x→∞)x[ln(1+x)-lnx]=lim(x→∞)x·ln[(1+x)/x]=lim(x→∞)ln[(1+x)/x]^x=lnlim(x→∞)[1/x+1]^x=lne=1.----[原创

设函数y=f(x)由方程e2x+y-cos(xy)=e-1所确定,则曲线y=f(x)在点(0,1)处的法线方程为____

由题设,将e2x+y-cos(xy)=e-1两边对x求导,得e2x+y•[2+y′]+sin(xy)•[y+xy']=0将x=0代入原方程得y=1,再将x=0,y=1代入上式,得y'|x=0=-2.因

用洛必达法则求极限求极限limx→0 sin3x/x.limx→ +∞ ln(e^x+1) /e^x.limx→+∞ x

对分子分母分别求导,再取极限.sin3x求导=3cos3x,x求导=1,当x=0,极限为3cos0/1=3同样求导,分子=e^x/(e^x+1),分母=e^x.x趋向正无穷,分子除分母=1/(e^x+

已知函数f(x)=-x2+2ex+m-1,g(x)=x+e2x (x>0).

(1)方法一:∵g(x)=x+e2x≥2e,等号成立的条件是x=e.故g(x)的值域是[2e,+∞),因而只需m≥2e,则g(x)=m就有实根.故m的取值范围是{m|m≥2e}.方法二:作出g(x)=

limx趋于0 1/x sinx=

解析limx/x²sinx两个极限sinx/x=11/x趋于0所以极限趋于0再问:我的问题是:limx趋于0x份之1乘sinx=再答:我知道两个重要极限知道吧limx->0sinx/x=1x

求极限limx→1(x^n-1)/(x-1)

法一:该极限为0/0型,用洛必达法则,分子分母同时对X求导limx→1【nx^(n-1)/1)】=n法二:妙用等比数列求和公式(x^n-1)/(x-1)=1+x+x^2+…………+x^(n-1),x≠

limx[ln(x+1)-lnx]的极限

是求x[ln(x+1)-ln(x)]的极限吧?lim(x->∞)x[ln(x+1)-ln(x)]=lim(x->∞)ln((x+1)/x)/(1/x)(0/0型罗比塔法则)=lim(x->∞)(x/(

某曲线在任一点的切线的斜率等于1+2e2x,且过点(0,3),求切线方程

曲线在任一点的切线的斜率等于1+2e2x,说明曲线方程为y=e^2x+x+c(c是一个常数)代入点(0,3),解得c=2因此y=e^2x+x+2

limx趋于无穷1/1+x等于什么,limx趋于无穷x/1+x等于什么,

在x趋于无穷的时候,1+x也趋于无穷大,所以常数1除以无穷大1+x趋于0即limx趋于无穷1/1+x=0而limx趋于无穷x/1+x=limx趋于无穷1/(1+1/x),显然趋于无穷时,1/x趋于0,

设二阶常系数线性微分方程y″+αy′+βy=γex的一个特解为y=e2x+(1+x)ex,

由:y=e2x+(1+x)ex得:y′=2e2x+(2+x)ex,y″=4e2x+(3+x)ex,将y,y′,y″代入原微分方程,整理可得:(4+2α+β)e2x+(1+α+β)xex+(3+2α+β

limx→0xsin(1/x)=0 limx→ ∞xsin(1/x)=1 limx→ ∞(1/x)sinx=1 为什么?

这三个都是不定式的积分,第一个:limx→0xsin(1/x)=0x是无穷小量;sin(1/x)相当于sin∞,但属于有界变量(±1之间)无穷小量乘以有界变量还是无穷小量,所以极限是0第二个:limx

limx->0 ln(1+3x)/sin4x

用等价无穷小代换有原式=lim3x/(4x)=3/4

limx→0+ln(1+sin2x)/x

是0/0型的,用洛必塔法则:limln(1+sin2x)/xx->0+=lim1/(1+sin2x)*cos2x*2/1x->0+=1/(1+0)*1*2/1=1/2

limx趋于0 1x(1/x—1/sinx)

  希望能有所帮助!

求极限:1、limx→﹢∞e^x-e^-x/e6x+e^-x:2、limx→0x-arcsinx/x^3:3、limx→

1.上下同乘e^-x2.lim(x→0)(x-arcsinx)/x^3 (0/0,洛必达法则)=lim(x→0)[1-1/√(1+x^2)]/(3x^2)(通分)=lim(x→0)[√(1+x^2)-