limx→0(e^x-sinx-1) (arcsinx)^²

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:20:01
limx→0(e^x-sinx-1) (arcsinx)^²
limx趋于0 ((1+x)^(1/x)-e)/sinx 极限

解 =-e/2.这题的后半部分也可用罗比达法则计算.

用洛必达法则计算极限:limx→0 (e^x-cosx)/(sinx)

0/0型,分数上下求导,得:e^x+sinx/cosx=1

limx→0 (tanx-sinx)/x

lim(x→0)(tanx-sinx)/x=lim(x→0)tanx(1-cosx)/x=lim(x→0)(1-cosx)=0

求极限limx→0(sin3x-sinx)/x

解题关键:0/0型,用洛必达法则.满意请采纳!

求极限limx→0(x-sinx)/x^2

limx→0[(x-sinx)/x²](0/0型)=limx→0[(1-cosx)/2x](0/0型)=limx→0(1/2)sinx=0.

limx→0 tan(tanx)-sin(sinx)/x^3

这个是高等数学里面的求极限问题,算是基本题目,给你一个解题思路.把limx->0时,tanx=x,sinx=x,这样上面的式子就是,(tanx-sinx)/x^3,然后把tanx分解成cosx和sin

求极限1.limx→-1(x^3+1)/sin(x+1); 2.limx→0(e^x-e^-x)/(sinx); 3.l

1、lim[x-->-1](x³+1)/sin(x+1)=lim[x-->-1](x+1)(x²-x+1)/sin(x+1)=lim[x-->-1](x²-x+1)=32

limx→0 (tanx-sinx)/x求极限

lim(x→0)(tanx-sinx)/x (这是0/0型,运用洛必达法则)=lim(x→0)(sec^2x-cosx)=0

limx趋于0 1/x sinx=

解析limx/x²sinx两个极限sinx/x=11/x趋于0所以极限趋于0再问:我的问题是:limx趋于0x份之1乘sinx=再答:我知道两个重要极限知道吧limx->0sinx/x=1x

limx趋近0 {【sinx---sin(sinx)】sinx}/(x^4)

利用罗必塔法则limx趋近0{【sinx---sin(sinx)】sinx}/(x^4)=limx趋近0{(sinx)的平方---sin(sinx)乘以sinx}/(x^4)=limx趋近0{sinx

求极限limx→0(x-sinx)/x^3是多少

用洛必达法则分数线上下同时求导两次,再由x-0时sinx~x就出答案了原式=limx-01-cosx/3x^2=limx-0sinx/6x=1/6

LIMx→0+ (sinx) ^x的极限

取对数ln(sinx)^x=xlnsinx=lnsinx/(1/x)罗比达法则=cosx/sinx/(-1/x²)=-x²cosx/sinx=【-2xcosx+x²sin

limx→0 (tanx-sinx)/sin^3x =limx→0 (tanx-sinx)/x³ 为什么可以直

tanx可以写为sinx/cosx所以可以去掉sinx

limx→0 e^sinx(x-sinx)/(x-tanx)

0/0型极限limx→0e^sinx(x-sinx)/(x-tanx)=limx→0[e^sinxcosx(x-sinx)+e^sinx(1-cosx)]/1-1/(x^2+1))=limx→0e^s

limx→0 2sinx-sin2x/x^3 的极限

lim(x→0)(2sinx-sin2x)/x^3=lim(x→0)(2sinx-2sinxcosx)/x^3=lim(x→0)2sinx(1-cosx)/x^3=lim(x→0)2x*x^2/2*1

limx趋近于0[3e^(x/x+1)-1]^(sinx/x)求极限

底数3e^(x/x+1)-1趋于2.指数sinx/x趋于1limx趋近于0[3e^(x/x+1)-1]^(sinx/x)=2