limx→0f(x)=A等价于?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:15:46
分母x的极限当然是0,1/x的极限是∞(1)若f(x)的极限不存在那么f(x)/x的极限一定不存在(2)若f(x)的极限存在为A,A≠0那么f(x)/x是A/0型,极限不存在∴f(x)的极限一定存在,
因为limx趋于0x/f(3x)的极限是2存在所以在分子x趋于0时,有分母f(0)趋于0所以运用导数定义:limx趋于03[f(0+3x)-f(0)]/3x=limx趋于0f(3x)/x=1/2即3f
∵lim(x→0)x/f(3x)=2∴lim(x→0)3x/f(3x)=6令t=3x,则x→0时,t→0∴lim(t→0)t/f(t)=6∴lim(t→0)f(t)/t=1/6令u=t/2,则t=2u
显然x趋于2时,分母x-2趋于0而[f(x)-5]/(x-2)的极限值为3,如果f(x)-5不是趋于0的话,除以分母0,一定会趋于无穷,而不是常数3所以limx->2f(x)-5=0即limx->2f
A是f(x)在x=0处的斜率A=limf(x)-f(0)/x-0
此题貌似有问题.例如,若f(x)=x^2,则f(x)也满足函数方程f(x+y)=f(x)+f(y)+2xy猜想题目应该是这样:设f(x)是定义域为R的连续函数,那么函数方程f(x+y)=f(x)+f(
因imx->a+f(x)=+无穷,故存在点c>a,使f(c)>0.又limx->b-f(x)=-无穷,故存在d(c
x=0点左右极限相等,e^0+a=3*0+b(B)b-a=1
f(x)=0的解就是和x轴的交点.f(x)>0就是在无实根的情况下成立,这样才没有和x轴的交点,又a>0所以在x轴上方.再问:能具体说说f(x)=0,f(x)>0时,△=b^2-4ac
x趋近0时,sinx与x、tanx与x都是等价无穷小即,lim(x->0)(sinx/x)=1lim(x->0)(tanx/x)=1limx趋近于0[6sinx-(tanx)f(x)]/x³
连续定义:lim(x->x0)f(x)=f(x0),函数f(x)在x=x0处连续(x0也就是你式子中的x')因为lim(x->x0)x=x0,这个很好懂,也可以用函数极限定义很好证明:对任意ε>0,取
f(a-x)=f(a+x)x=-a+yf(2a-y)=f(y)f(2a-x)=f(x)
显然对于极限limx->0[f(x)-1]/x,在x趋于0的时候,其分母x就趋于0那么如果极限值存在的话,显然分子也必须趋于0,即f(x)-1=0,所以f(0)=0而由洛必达法则可以知道,极限值等于对
应该是f'(x)=lim(x→0)[f(2x)/(2x)]=(1/2)lim(x→0)[f(2x)/x]=(1/2)*2=1.f'(x)=lim(x→无穷)[f(1/2x)/(1/2x)=2lim(x
lim(x→0)f(x)/x^2=2则lim(x→0)f(x)/x=lim(x→0)f(x)/x^2*x=lim(x→0)f(x)/x^2*lim(x→0)x=0*2=0
因为sin(1/x^2)不存在极限只能根据定理【无穷小*有界函数=无穷小】再问:那运用无穷小替换时应该注意什么条件呢?比如什么情况下能用什么情况下不能用?再答:首先是当x趋近于0时其次函数当x趋近0时
用洛比达法则,对f(x)和sin6x微分就可以了,结果是limx=f'(x)/6cos6x=2/6=1/3
ak!再答:泰勒展开式!再答:再问:没有教泰勒展开式。。。再答:拉格朗日教了吧!我写的也是拉格朗日中值定理!泰勒的特殊形式!再问:好的!谢谢呀
limx→+0时,tan9x等价于9x,sin√x等价于√x,sinx^2等价于x^2原式=(9x)^3/2*√x/(x^2)=27