limx→3 x-3 x 3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:40:52
limx→3 x-3 x 3
X3次方-3X

X³-3X=X(X²-3)=X(X+√3)(X-√3)

求极限 limx→∞ 3x^2+x-1/4x^2-3x+2

分子分母同时除以x^2然后得3/4

limx→0 tan(tanx)-sin(sinx)/x^3

这个是高等数学里面的求极限问题,算是基本题目,给你一个解题思路.把limx->0时,tanx=x,sinx=x,这样上面的式子就是,(tanx-sinx)/x^3,然后把tanx分解成cosx和sin

limx→ ∞ (x^2+3x-1)/(3x^2-2x+4)求极限,

上下除以x²limx→∞(x^2+3x-1)/(3x^2-2x+4)=limx→∞(1+3/x-1/x²)/(3-2/x+4/x²)x在分母的都趋于0所以=1/3

limx→∞(1+1/2x)^3x+2

limx→∞(1+1/2x)^3x+2=limx→∞(1+1/2x)^2x*(3x+2)/(2x)=e^limx→∞(3x+2)/(2x)=e^(3/2)

若limx→2 f(x)-5/x-2=3,求limx→2 f(x)极限值

显然x趋于2时,分母x-2趋于0而[f(x)-5]/(x-2)的极限值为3,如果f(x)-5不是趋于0的话,除以分母0,一定会趋于无穷,而不是常数3所以limx->2f(x)-5=0即limx->2f

①limx→0(x+e^3x)^1/x

①limx→0(x+e^3x)^1/x=lim[e^ln(x+e^3x)^1/x=e^lim[ln(x+e^3x)/x]=e^lim[(1+3e^3x)/(x+e^3x)]罗比达=e^4②limx→0

Limx→o(x-sinx)/tan^3x

求极限x➔0lim[(x-sinx)/tan³x]原式=x➔0lim[(1-cosx)/(3tan²xsec²x)]=x➔0li

设limx→x

证:假设limx→x0[f(x)+g(x)]=B存在.则limx→x0g(x)=limx→x0[f(x)+g(x)−f(x)]=limx→x0[f(x)+g(x)]−limx→x0f(x)=B−A所以

高数极限limx→∞ sin2x/3x=?

limx→∞sin2x/3x=0|sinx|再问:是不是所有:(有限值除以无穷大时,极限都等于0)?再答:是的

求极限limx→0(tanx-x)x^3

应该是limx→0(tanx-x)/x^3(tanx-x)/x^3=(sinx/cosx-x)/x^3=(sinx-xcosx)/x^3cosxx→0,cosx→1;所以limx→0(tanx-x)/

求极限limx→0(x-sinx)/x^3是多少

用洛必达法则分数线上下同时求导两次,再由x-0时sinx~x就出答案了原式=limx-01-cosx/3x^2=limx-0sinx/6x=1/6

limx→π/2 (sinx)^tanx limx→∞(2x+3/2x+1)^x+1 求极限

 第二题用的是第二个重要极限. 【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”.

limx→0 (tanx-sinx)/sin^3x =limx→0 (tanx-sinx)/x³ 为什么可以直

tanx可以写为sinx/cosx所以可以去掉sinx

limx→0 2sinx-sin2x/x^3 的极限

lim(x→0)(2sinx-sin2x)/x^3=lim(x→0)(2sinx-2sinxcosx)/x^3=lim(x→0)2sinx(1-cosx)/x^3=lim(x→0)2x*x^2/2*1

limx->0 ln(1+3x)/sin4x

用等价无穷小代换有原式=lim3x/(4x)=3/4

求极限:1、limx→﹢∞e^x-e^-x/e6x+e^-x:2、limx→0x-arcsinx/x^3:3、limx→

1.上下同乘e^-x2.lim(x→0)(x-arcsinx)/x^3 (0/0,洛必达法则)=lim(x→0)[1-1/√(1+x^2)]/(3x^2)(通分)=lim(x→0)[√(1+x^2)-

求极限limx→0时arctanx-x/x^3

是(arctanx-x)/x^3吧.用泰勒公式做,答案是-1