limx趋于0 根号1 tanx 根号1 sinx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 13:18:45
limx趋于0 根号1 tanx 根号1 sinx
求极限limx趋近于0 根号下(1+sinax) -根号下(1-arctanbx )/ (x+tanx)

还有什么不懂的可以问我,数学公式太难打了.

limx→0(sinx-tanx)/{[三次根号下(1+x^2)-1]*[根号下(1+sinx)-1]}

lim(x→0)(sinx-tanx)/{[3√(1+x^2)-1]*[√(1+sinx)-1]}用等价无穷小化简:(n√x+1)-1x/nsinx~x1-cosx~x²/2还要把sinx-

求极限limx到0ln(1+x²)(根号下1+x-1)/x-tanx

看不懂你写的什么再问:再答:等价无穷小代换再问:谢谢了!再答:x-tanx根据泰勒公式得出再问:才开始学泰勒公式,没太掌握再答:那一章是高数的重中之重再问:工科数分,简直云里雾里

求极限limx趋向于0 {根号下(1+tanx)-根号下(1+sinx)}/ln(1+x的3次方)

lim(x→0)[√(1+tanx)-√(1+sinx)]/ln(1+x^3)=lim(x→0)[√(1+tanx)-√(1+sinx)]/(x^3)=lim(x→0)[√(1+tanx)-√(1+s

lim (x趋于0)1/{根号下(1+tanx)+根号下(1+sinx) }等于多少?为什么?

当x→0时tanx→0sinx→0∴lim(x→0)1/{根号下(1+tanx)+根号下(1+sinx)}=1/(1+1)=1/2再问:问一下,根号下(1+tanx)+根号下(1+sinx)=2,这是

limx趋于0((根号1+xsinx)-1)/x的平方的极限

由x~sinxx趋于0时得lim(√(1+xsinx)-1)/x^2=lim(√(1+x^2)-1)/x^2=lim((√(1+x^2)-1)*(√(1+x^2)+1))/(x^2*(√(1+x^2)

limx趋于0 1/x sinx=

解析limx/x²sinx两个极限sinx/x=11/x趋于0所以极限趋于0再问:我的问题是:limx趋于0x份之1乘sinx=再答:我知道两个重要极限知道吧limx->0sinx/x=1x

如何参照重要极限limx趋于0时sinx/x=1的形式,求解以下极限limx趋于0时3x+sinx/3x-tanx

用洛必达法则分子分母同时求导得3+cosx/3-sec^2带入x=0得x极限=2

limx趋于0(tanx-sinx)/x,求极限

再答:再答:有道例题自己看再问:我能说我看不懂么再答:那还不如不做再问:好吧.....看懂了但是....

求limx趋于0 [5x^2-2(1-cos2x)]/(3x^3+4tanx^2)极限

分子分母同除以x²,原极限=lim[x→0][5-2(1-cos2x)/x²]/(3x+4tanx²/x²)(每一项极限都是可以算出来的.)=(5-4)/(0+

1、求limx→0[(tanx-x)]/x^2*tanx

再问:第三题里面的a和c都能算出来了。那么b怎么算再答:我看错了,以为是趋于无穷大。再问:第2题最后一步(2/x)/e^x的极限为什么为0,2/x的极限是0,e^x的极限不是不存在吗?这种情况下怎么算

limx趋向0根号下(1+tanx) - 根号下(1+sinx)的差/x的三次方

Lim(x->0)[√(1+tanx)-√(1+sinx)]/x^3分子分母同时乘以√(1+tanx)+√(1+sinx)原式=lim(x->0)(tanx-sinx)/x^3/[√(1+tanx)+

求极限:limx趋于0 √(平方根)x+1(根号完)-1/x

原式中,当x趋近于0的时候,-1+√(x+1),趋近于0,x趋近于0分子分母都趋近于0构成0/0型极限用洛必达法则原式=limx趋于0[1/(2√(x+1)]=1/2

计算极限limx→0根号下ln(tanx/x)

limx→0根号下ln(tanx/x)极限为0在x→0时,tanx与x为等价无穷小.很容易证明

limx趋于0(三次根号下(1+x^3)-1)/x^3

再问:可是x也带次方了再答:公式里的x看做是一个式子,只要这个式子趋近于0就行了,再答:所以上面的x立方可以整体看做下面的x再问:要是把x^3看做x的话,那后面的x岂不变成x^3了再答:对啊,我是那么

limx趋于0根号下(x^2-2x+5)

limx趋于0根号下(x^2-2x+5)=lim根号(0-0+5)=根号5再问:总感觉等于2倍根号2,当x为-1时就是2倍根号2,比根号五大啊。。。。

limx趋于0 x/根号(1+x)-根号(1-x)

分母求导如下:(√(1+x)-√(1-x))'=[(1+x)∧(-1/2)-(1-x)∧(-1/2)]'=[(1+x)∧(-1/2)]'-[(1+x)∧(-1/2)]'=-1/2(1+x)∧(1/2)