limx趋向于0 sinx除以x 的x的平方分之一

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:06:57
limx趋向于0 sinx除以x 的x的平方分之一
求极限limx趋向于0 {根号下(1+tanx)-根号下(1+sinx)}/ln(1+x的3次方)

lim(x→0)[√(1+tanx)-√(1+sinx)]/ln(1+x^3)=lim(x→0)[√(1+tanx)-√(1+sinx)]/(x^3)=lim(x→0)[√(1+tanx)-√(1+s

(sinx-2x)除以(3cosx+x)当x趋向于0时的极限

趋向0的时候分子类似于x-2x=-x分母类似于3+x答案是0恩严密的做法是用泰勒展式,自己展一阶就看出来了

高等数学概念我们知道limx趋向于0时候'有sinx/x=1 那么当x趋向于0 lim(x*sin1/x)为什么不能写成

因为若要lim(sin1/x)/1/x=1,实际上有一个条件是1/X→0,此时X→∞也就是在后面需要LZ把1/X当成了一个整体,但此时1/X并不满足这个整体的值趋于0这个条件.另,说它有界无穷小是因为

求极限 Limx趋向于0 x加2分之sinx

楼主的极限是不是这样的;Limsinx/(x+2)有极限运算法则:=Limsinx/Lim(x+2)x->0=0/2=0

求极限:limx^(x^x-1),x趋向于0+

结果是e^2x^X-1=e^(xlnx)-1=xlnx好了原式=limx^(xlnx)下面罗比达法则

limx趋向于0 (1+tanx)^(1/x)的极限

下面极限下表我就省了啊,=(1+tanx)^[tanx/(xtanx)]=e^(tanx/x)=e再问:你这个是用洛必达法则做的么?有点不是很明白。再答:没有啊,这不是用罗比达法则的啊这是用我们高数数

limx趋向于0 求极限x-sinx/x-tanx

0/0型用洛必达法则原式=lim(1-cosx)/(1-sec²x)还是0/0,继续用=limsinx/(2secx*secxtanx)=limsinx/(2/cos²x*sinx

求x趋向于0时,limx^lnx的值

x^lnx=e^(lnx*lnx)=e^((lnx)^2)x趋向于0时(lnx)^2趋向无穷大,故e^((lnx)^2)因为趋向无穷大,故limx^lnx的值为无穷大

limx/sinx.x趋向于0的极限

等于1x趋向于0时,x≈sinx.同济大学出版的高数,两个重要极限中的第一个,第二个重要极限:(1+x)^1/xx趋向于0,极限也是1.口诀是内大外小内外互倒.再问:那0乘以sinx分之一不能那么算吗

limx趋向于无穷大((2+e^(1/x))/(1+e^(4/x)+sinx/|x|)

再答:不懂的话还可以问我。再问:可以拆开一个一个求?再答:额,前面的只是给你解释方便你看懂,平常的话不写都可以。

limx趋向于0(ln|sinx|-ln|x|)的极限

=In(sinx除以x),x趋于0.括号里面的上下相等,等于1,所以,整个等于0再问:不懂再答:就是,当x趋于0.的时候,sinx=x,这是一个可以运用的公式。还有很多,那时候,tanx=x,等等,你

limx趋向于0,sinx/∫tdt,上2x,下0,求极限,

再答:多谢采纳,有问题可继续问,可以收藏我

limx趋向于0(tanx-sinx)/sin^3

只能化简后才能求解.再问:题目我会做,只是想问为何不能分子直接等价无穷小,分子是两个数相减,是不是不能直接用等价无穷小?书上写的是一般情况下,我想知道什么是特殊情况再答:三角函数的题目只能是先降幂,并

limx趋向于0 sinx/logx的极限 limx

再问:非常感谢能详细的解释一下吗?感觉看不大明白多谢再问:主要是第二个问题看不大明白再答:lnx=0;x-1=0;符合洛必达,可以分别分子分母求导

为什么x趋向0时,sinx趋向于x

等价无穷小的概念请看一下高等教育出版社的《高等数学》同济大学第4版,里面写得很清楚

limX趋向于0+时,e^(-1/x)除以X的极限怎么用洛必达计算出来,需要详细过程

lime^(-1/x)/xt=1/xlimt*e^-t=limt/e^t=lim1/e^t=0(t趋向于正无穷)

limx趋向于0 (sinx/x)^1/(1-cosx) 洛必达法则

罗必塔法则公式limu^v=e^(limvlnu)【适用于求1^无穷,无穷^0,0^0型极限】这里u=sinx/x,v=1/(1-cosx)limvlnu=lim[ln(sinx/x)]/(1-cos