lim{n[lnn-ln(n 2)]}

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 01:03:09
lim{n[lnn-ln(n 2)]}
lim n^λ(ln(1+n)-lnn)Vn=3,讨论级数Vn和的敛散性

limn^λ(ln(1+n)-lnn)Vn=3limn^(λ-1)(ln(1+1/n)^n)Vn=3limVn/n^(1-λ)=31-λ>1即λ

求极限lim{n[ln(n+1)-lnn] n→∞

①等价无穷小量替换:ln(1+t)t(t->0)lim(n→∞)n[ln(n+1)-lnn]=lim(n→∞)nln[(n+1)/n]=lim(n→∞)nln(1+1/n)=lim(n→∞)n*(1/

求极限lim(ntan1/n)n2次

symsnlimit((n*tan(1/n))^n^2,n,inf)ans=1再问:答案是e1/3次再答:limx->inf[xtna(1/x)]^(x^2)]=limt->0[tna(t)/t]^(

请问如何证明lim(n→∞)[n/(n2+n)+n/(n2+2n)+…+n/(n2+nn)]=1,

Limit[1/√(n^2+1)+1/√(n^2+2)+…+1/√(n^2+n),n→∞]≥Limit[1/√(n^2+n)+1/√(n^2+n)+…+1/√(n^2+n),n→∞]≥Limit[n/

n趋于无穷大时,{n[ln(n+2)-lnn]} 的极限

n[ln(n+2)-lnn]=nln(n+2)/n=nln(1+2/n)=2ln[(1+2/n)^(n/2)]当n趋于无穷时(1+2/n)^(n/2)趋近于e所以n[ln(n+2)-lnn]=2ln[

求极限lim((n+1)/(n2+1)+(n+2)/(n2+2)+...+(n+n)/(n2+n)),n趋近无穷

再答:用夹逼定理再答:亲,满意给好评^O^

1+1/2+1/3+……+1/n与ln(n+1)及lnn的大小关系及证明

已知x>ln(1+x),1>ln(1+1)1/2>ln(1+1/2)1/3>ln(1+1/3).1/n>>ln(1+1/n)累加得1+1/2+1/3+...+1/n>ln2+ln(3/2)+ln(4/

求下列极限 lim{n[ln(n+2)-lnn]}趋向于无穷 lim ln(1+2x)/sin3x趋向于0

lim{n[ln(n+2)-lnn]}=limln{[(n+2)/n]^n}=limln[(1+2/n)^n]=2limln[(1+2/n)^(n/2)]=2lne=2limln(1+2x)/sin3

证明不等式:ln(x+1)≤1+1/2+1/3+.+1/n<1+lnn

证明:令f(x)=1/x,则f(x)在区间[n,n+1]上的最大值为f(n)=1/n,最小值为f(n+1)=1/(n+1).由定积分性质,得1/(n+1)即1/(n+1)所以1/21/3......1

求级数敛散性∑(2→无穷)[ln(lnn)]^(-n),求敛散性,

当n>3^9>e^(e²),有ln(n)>e²,ln(ln(n))>2.此时成立0根据(正项级数)比较判别法,由∑2^(-n)收敛知∑(ln(ln(n)))^(-n)也收敛.

大一求极限lim(n/(n2+1)+n/(n2+2^2)+……+n/(n2+n2))

解 利用定积分的定义得其中第二个等号后的积分利用了定积分的定义. 对[0,1]区间进行n等分,每一个区间的长度为1/n, 每一个小区间上都取右端点.

利用定积分定义求lim(n→∞)[(1/n)*lnn!-lnn]

原式=lim(n→∞)1/n(ln(1/n)+ln(2/n)+ln(3/n)+...+ln(n/n))=∫(0→1)lnxdx=xlnx|(0→1)-∫(0→1)dx=0-x|(0→1)=-1再问:1

计算lim(1/n2+1+2/n2+1+3/n2+1+...+n/n2+1)

上式=lim(1+2+...+n)/(n^2+1)=lim[n(n+1)/2]/(n^2+1)=1/2lim[(n^2+n)/(n^2+1)]=1/2*1=1/2,注意到n相对于n^2为低阶.

n趋向于无穷大,lim n[ln(n+2)-ln(n+1)],

ln(n+2)-ln(n+1)可以化成ln(1+1/n+1),n趋于无穷大,则有1/n+1趋于零,所以limnln1,算得结果为0

求极限:lim{n[ln(n+1)-lnn]}的极限是

楼上解错了,洛必达法则只用于函数,而不是用于数列.点击放大、再点击再放大:

求极限n【ln(n-1)-lnn】

以下各式省略lim(n→∞):n×[ln(n-1)-ln(n)]=n×ln[(n-1)/n]=n×ln(1-1/n)=ln[(1-1/n)^n]=ln{[(1-1/n)^(-n)]^(-1)}=1/{

求当n趋近于无穷时,n[ln(n-1)-lnn]的极限

n→∞,limn[ln(n-1)-lnn]=limn*[ln(n-1/n)]=lim[ln(1-1/n)^n]因为函数f(x)=lnx连续,所以归结得:lim[ln(1-1/n)^n]=ln[lim(