lim√1 tanx-√1 sinx x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:57:40
lim√1 tanx-√1 sinx x
lim[tan(tanx)-sin(sinx)]/x³,x趋近于0的极限是1,

利用级数可以做吧,tanx=x+x^3/3+2x^5/15+O(x^6)=T+O(x^6),tanT=T+T^3/3+2T^5/15+O(T^6)=x+2x^3/3+3x^5/5+O(x^6);sin

用洛必达法则求极限lim【x→0+】(1/√x﹚^tanx

答案为1,我给你说思路,对1/√x取e为底的指数,不明白可追问

求lim(x→0)[√(1+tanx)-√(1+sinx)]/[x*ln(1+x)-x^2]

lim(x→0)[√(1+tanx)-√(1+sinx)]/[x*ln(1+x)-x^2]=lim(x→0)[tanx-sinx]/[x*ln(1+x)-x^2][√(1+tanx)+√(1+sinx

求极限lim(x→0)(根号下1+tanx减去根号下1+sinx)/sin^3x

分子分母同时乘以(根号下1+tanx加根号下1+sinx),则所求=lim(x→0)(tanx-sinx)/[sin^3x(根号下1+tanx加根号下1+sinx)]=lim(x→0)(tanx-si

求极限lim(x→+∞)(sin√(x+1)-sin√x)

sin(A+B)-sin(A-B)=2sinBcosAA+B=√(x+1)A-B=√xA=(1/2)[√(x+1)+√x]B=(1/2)[√(x+1)-√x]|lim(x→+∞)(sin√(x+1)-

求极限lim(x→∞)(sin√x+1-sin√x)

sina-sinb=2cos[(a+b)/2]sin[(a-b)/2]然后你知道的等式右边部分的右半边sin[(a-b)/2趋于0,自己会算吧.2cos[(a+b)/2]绝对值不超2.所以极限是0.

lim√(1-cosx)/tanx用等价无穷小代换求极限

lim√(1-cosx)/tanx=lim-√2sin(x/2)/tanx=lim-√2/2x/x=-√2/2lim√(1-cosx)/tanx=lim√2sin(x/2)/tanx=lim√2/2x

求极限:x→0时求极限Lim[ √(1+tanx)-√(1+sinx)]/{[x√(1+sin²x)]-x}

先上下通分,同乘√(1+tanx)+√(1+sinx)得Lim(tanx-sinx)/2[x(√(1+sin²x)-1)]{其中,lim√(1+tanx)+√(1+sinx)=2}=lim(

lim(x趋向于0)(根号1+tanx -根号1+sinx)/(x根号(1+sin^2x) -1)

再问:嗯再答:可以直接将x=0代入,因为分母不为0啊!求极限的结果=0

求lim(3√1+tanx-1)(√1+x2-1)/tanx-sinx x趋近0的极限

再问:√1+x2-1怎么代成1/2x2的??再问:求解这步,看不懂。。再问:谢谢你,现在明白了

求极限 lim(x->0)[√(1+tanx)-√(1+sinx)]/[x√(1+sin²x)-x]

lim(x->0)[√(1+tanx)-√(1+sinx)]/[x√(1+sin²x)-x]=lim[√(1+tanx)-√(1+sinx)]*[√(1+tanx)+√(1+sinx)]/[

lim(x趋向于正无穷大时)[sin√(x+1)-sin√x]

lim[sin√(x+1)-sin√x]=lim2cos((√(x+1)+√x)/2)sin((√(x+1)-√x)/2)对于limsin((√(x+1)-√x)/2)有limsin((√(x+1)-

求lim(x→0)[√(1+tanx)-√(1+sinx)]/x

lim(x→0)[√(1+tanx)-√(1+sinx)]/x分子分母同时乘以[√(1+tanx)+√(1+sinx)]=lim(x→0)[√(1+tanx)-√(1+sinx)]*[√(1+tanx

1.lim x→0,(tanx-sinx)/(sin2x)^3 2.lim x→0,sin(x-1)tan(x-1)/2

limx→0,(tanx-sinx)/(sin2x)^3应用罗比达法则,分子分母同时求导上式=limx→0,(1/(cosx)^2-cosx)/[3*(sin2x)^2*cos2x*2]=1/6lim

已知sin(x-45°)=√2/4.求(1)sinxcosx值,(2)求tanx+(1/tanx)值

1、sin(x-45)=sinxcos45-cosxsin45=√2/2*(sinx-cosx)=√2/4sinx-cosx=1/2平方sin²x+cos²x-2sinxcosx=

t->0,lim[tan(sinx)-sin(tanx)]/(tanx-sinx)=?

原式=lim{x->0}{tan(sinx)-tan(tanx)[1+cos(tanx)-1]}/(tanx-sinx)=lim{x->0}{tan(sinx-tanx)[1+tan(sinx)tan

求lim(x→0) (√1-cosx^2)/(1-cosx),还有题lim(x→0) (x-xcosx)/(tanx-s

(1)lim(x->0)[√(1-cos(x²))/(1-cosx)]=lim(x->0)[√(2sin²(x²/2))/(2sin²(x/2))](应用半角公

求极限lim(x→0)[√(1+tanx)-√(1+sinx)]/[xln(1+x)-x^2]

你好!答案是-1/2.详解如图:http://hi.baidu.com/wusongsha0926/album/item/f2f445cf7bcb0a4674a290706b63f6246a60af8

lim(x→0)[cos√(1-x^2)]/[tanx*ln(1+x)]

应该是∞无穷大分子cos√(1-x^2)趋近于cos1分母tanx趋近于0ln(1+x)趋近于0实数除以一个无穷小应该就是无穷大咯