lim根号n(n次根号下n-1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 22:17:14
怎么会呢,分子分母同时有理化,得出的式子可求极限啊!=======当n趋于无穷大时lim[√(n+1)-√n]/[√(n+2)-√n]=lim[(n+1)-n][√(n+2)+√n]/{[(n+2)-
不是说不能直接等于零,而是因为由于对于∞•0型情况的极限不全为零——要看具体情况.如果你做题做多,或者学习过泰勒公式,你应该发现上面的式子的极限不应该是零先给出你提出的问题证明过程,(见附
再问:大神小的第二步没看懂为什么ln直接没了⊙_⊙再问:第二步突然懂了不好意思哈我是菜鸟→_→再问:大神第三步怎么来的?真心看不懂求解( ̄∇ ̄)我太笨了。。。。。再答:第三步是洛必达,对分
这个不是本来就成立么
证明:①对任意ε>0,要使|(√(n+1)-√n)-0|只要|(√(n+1)-√n)-0|=√(n+1)-√n=1/[√(n+1)+√n]1/ε^2即可.②故存在N=[1/ε^2]∈N③当n>N时,n
√(n+1)-√n=[√(n+1)-√n]*[√(n+1)+√n]/[√(n+1)+√n]=1/[√(n+1)+√n]那么显然在n趋于无穷大的时候,分母[√(n+1)+√n]趋于无穷大,所以√(n+1
题目是不是有误呀?是不是3次根号下n的3次方+2?不管了lim(3次根号下n+2)/(根号下n平方+n)=lim[6次根号下(n+2)²]/[6次根号下(n²+n)³]=
设y=[√(n^2+1)/(n+1)]^nlny=nln[√(n^2+1)/(n+1)]=n[1/2ln(n^2+1)-ln(n+1)]lim(n→∞)lny=lim[1/2ln(n^2+1)-ln(
设xn=n^n/n!limx(n+1)/xn=lim(1+1/n)^n*(n)/(n+1)=e*1=e那么limn次根号下(xn)=limxn=e又limn次根号下(xn)=limn次根号下(n^n/
n[√(n^2+1)-√(n^2-1)]进行分子有理化,分子分母同时乘以一个式子=n*[√(n^2+1)-√(n^2-1)]*{[√(n^2+1)+√(n^2-1)]/[√(n^2+1)+√(n^2-
泪笑为您解答,如若满意,请点击[采纳为满意回答];如若您有不满意之处,请指出,我一定改正!希望还您一个正确答复!祝您学业进步!
则limn次根号下(xn)=limx(n+1)/xn是不是很眼熟?楼主,╮(╯▽╰)╭设yn=x(n+1)/xnlimn次根号下(y1*y2*...*yn)=lim(n-1)次根号下(y1*y2*..
证明:转化为函数f(x)=x^(1/x)的极限f(x)=x^(1/x)=e^{ln[x^(1/x)]}=e^(lnx/x)所以limf(x)=e^[lim(lnx/x)]括号里的极限是个无穷除以无穷的
limx>∞(√(n+3)-√n)*√(n-1)=limx>∞(√(n+3)-√n)(√(n+3)+√n)*√(n-1)/(√(n+3)+√n)=limx>∞(n+3-n)√(n-1)/(√(n+3)
(n+1)(根号n^2+1-n)*(根号n^2+1+n)/(根号n^2+1+n)=(n+1)*1/(根号n^2+1+n)上下同时除以n=(1+1/n)/(根号1+1/n^2+1/n)=1/1=1
设f(n)=[(a^1/n+b^1/n)/2]^n,lnf(n)=n*ln[(a^1/n+b^1/n)/2]令t=1/n,n->+∞,t->0,lnf(n)=ln[(a^t+b^t)/2]/t当t->
lim(n趋于无穷)n次根号下[1+|x|^3n]=lime^[(1/n)·ln(1+|x|^3n)].则|x|1时,极限=lime^[(1/n)·ln(1+|x|^3n)]=lime^[(3ln|x
你好!原式=lim[√(3n+n²)-n][√(3n+n²)+n]/[√(3n+n²)+n]=lim[(3n+n²)-n²]/[√(3n+n²
上下乘√(n²+2n)+√(n²-1)分子是平方差=n²+2n-n²+1=2n+1原式=lim(2n+1)/[√(n²+2n)+√(n²-1