lim趋向0时,求根号下((x 1)-1) sin2x的极限

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:16:31
lim趋向0时,求根号下((x 1)-1) sin2x的极限
已知lim(x趋向无穷大)(根号下(x^2+x+1)-ax)存在 求a与该极限值

分子有理化lim(x→∞)(√(x^2+x+1)-ax)=lim(x→∞)(√(x^2+x+1)+ax)(√(x^2+x+1)-ax)/(√(x^2+x+1)+ax)=lim(x→∞)(x^2+x+1

求极限当x趋向0时lim根号下x+4-2/x怎么解啊

原式化为1/((sqrt)(x+4)+2),结果等于1/4;他的意思是当a逐渐接近于零时,函数的值,具体的看定义

求极限lim x趋向无穷 根号(x^2+x)下 - x

当x趋于正和负无穷时的极限是不等的,你体味一下!不懂请追问再问:我是错在第二排,减成了x,该减x^2,但是第三行第四行为什么要那样写啊直接第三行不就是结果?再答:不是的,你把x除进根号里,要注意正负号

lim根号下(X+1)-1除以X X趋向于0 求极限

分子有理化得lim(x→0)[√(X+1)-1]/x=lim(x→0)[√(X+1)-1][√(X+1)+1]/{x[√(X+1)+1]}=lim(x→0)x/{x[√(X+1)+1]}=lim(x→

lim x趋向于0时 e的x次方减去根号下x+1 除以x 等于?

最后等于1/2这是用到了泰勒公式

求极限.lim x(根号下(x^2+1) ) -x x趋向无穷大

原式=lim(x->∞)[根号下(x²+1)-x]*[根号下(x²+1))+x]/[根号下(x²+1))+x]=lim(x->∞)[(x²+1)-x²

求极限.lim x(根号下(x^2+1) ) -x x趋向无穷大,求快解,

再问:为什么后面等于0不是1啊?再答:分子是1,分母是无穷大,所以比值极限是0.再问:哦哦,谢谢啊

求极限.lim x(根号下(x^2+1) ) -x x趋向正无穷

分子分母同时乘以根号下(x^2+1)+x得到limx/[根号下(x^2+1)+x]x区域无穷大时候,原式=x/(x+x)=1/2

求极限,lim(x趋向于0+)(根号(1+tan2x)-根号(1-tan2x))/sin3x

先分子有理化:lim(x→0+)(√(1+tan2x)-√(1-tan2x))/sin3x=lim(x→0+)2tan2x/(√(1+tan2x)+√(1-tan2x))sin3x(注意:(√(1+t

当x趋向于0时,lim(根号下1-x^2 - 根号下1+x^2)/sin4x^2的极限.

由于题意不太清楚,下面分两种情况

lim趋向正无穷(根号下X^2+X-1 -AX)=b ,求a ,b

a=1,b=0再问:能写下过程么?再答:limx趋向无穷根号下(x^2+x-1)=xx-ax=ba=1,b=0

求极限 lim x趋向于无穷大ln(x/根号下x平方-1

真数上下除以x=1/[√(1-1/x²)]x→∞1/x²→0所以真数极限=1/1=1所以极限=ln1=0

x趋向0+时求lim(x^x-1)*lnx

原式=[e^(xlnx)-1]*lnx.当x->0时,xlnx趋向于负无穷大(可用锣密达法则求出)所以原多项式分子趋向于0,分母趋向于负无穷大,总结果为0.

求下列极限 lim(x趋向2)x-2/根号3x-2.和lim(x趋向0)根号1+x^2-1/x

lim(x→2)(x-2)/√(3x-2)直接把2带入即可=0.lim(x→0)[√(1+x^2)-1]/x0/0型极限不能直接代数=lim(x→0{√(1+x^2)-1][√(1+x^2)+1}/{

用定义证明lim(x趋向-1)根号下1-x^2=0

证明lim(x→-1)√(1-x^2)=0lim(x→-1)(1-x^2)=0.  用定义证明极限实际上是格式的写法,依样画葫芦就是:  3)证限|x+1|

求lim(二次根号下X+三次根号下X)/二次根号下(3x+1) x趋向于正无穷

[X^(1/2)+X^(1/3)]/[(3X+1)^(1/2)]因为X→∞时、3X+1→3X、原式=[X^(1/2)+X^(1/3)]/[3^(1/2)*X^(1/2)]同除X^(1/2)原式={1+

求X趋向于0时lim[根号(x+9)-3]/[根号(x+4)-2] 的极限!

分子分母同时乘以((根号x+4)+2)((根号x+9)+3)然后约分,代入x=0即可望采纳哈.

lim(x趋向0){根号下(1-x)-1}/x=?

lim[√(1-x)-1]/xx->0lim[√(1-x)-1][√(1-x)+1]/x[√(1-x)+1]=lim-x/x[√(1-x)+1]x->0=lim-1/[√(1-x)+1]x->0=-1