lim趋近于正无穷COS根号下x 1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:31:06
一般用有理化因子此处有理化因子为√(x^2+x-1)+x[√(x^2+x-1)-x][√(x^2+x-1)+x]=lim----------------------------------------
lim(x→+∞)(π/2-arctanx)/(1/x)=lim(x→+∞)(arccotx)/(1/x)=lim(x→+∞)[-1/(1+x^2)]/(-1/x^2)=1
不是说不能直接等于零,而是因为由于对于∞•0型情况的极限不全为零——要看具体情况.如果你做题做多,或者学习过泰勒公式,你应该发现上面的式子的极限不应该是零先给出你提出的问题证明过程,(见附
再问:额、、从第一步到第二步咋来的?再答:分子有理化分母分子同时乘以√(n²+2n)+√(n²-1)
【注:1=(x+1)-x=[√(x+1)+√x][√(x+1)-√x].===>√(x+1)-√x=1/[√(x+1)+√x].(1)和差化积得:sin√(x+1)-sin√x=2cos{[√(x+1
这个极限不存在.如果取x=a[n]=2nπ→∞那么xcosx=2nπ→+∞如果取x=b[n]=(2n+1)π→∞那么xcosx=-(2n+1)π→-∞如果取x=(n+1/2)π→∞那么xcosx=0所
因cosx/2cosx/4…cosx/2^n=[cosx/2*cosx/4*.*2sinx/2^n*cosx/2^n]/(2sinx/2^n)=[cosx/2*cosx/4*...*sinx/2^(n
lim(x趋近于正无穷)[(根号下x^2+2x)-x]=lim(x趋近于正无穷)[(根号下x^2+2x)-x][(根号下x^2+2x)+x]/[(根号下x^2+2x)+x]=lim(x趋近于正无穷)[
原式=lim[x²+2+4x√(x²+2)+4x²]/(3x²+1)=lim[5x²+2+4x√(x²+2)]/(3x²+1)上下
根据罗必达法则,分子分母同时求导,其极限与求导之前的极限相同.所以limlnx^2/根号下x=lim4lnx/根号下x再利用罗必达法则一次,分子分母再同时求导一次,则lim4lnx/根号下x=lim8
主要步骤都在这个上面了.不懂再问.可能不够清晰.再问:第二排第二个等号怎么得来的?懂了谢谢你能解释下你的思路吗?
因为ln(1+1/x)=1/x+o(1/x)(泰勒展开)极限=(1+x)/x=1
=lim(1-cosx)/[x(1-cos根号下x)·(1+根号下cosx)]=(1/2)·lim(x²/2)/[x(1-cos根号下x)]=(1/4)·limx/(1-cos根号下x)=(
朋友,因为插入图片的大小限制,3个题只能给出关键步骤,再作以下提示吧:(1)先有理化,下一步你分子分母同除x即可解决.(2)先把tanx换成等价无穷小x,再用洛必达法则,下一步你用一下第一重要极限即可
利用等价无穷小,上面的等价为1/2x,下面的等价为x^2,约掉x后分母还有x,所以分母是无穷小,除以无穷小就是无穷大了