级数(-1)n次方 2n 1x2n 1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 01:00:14
用拉阿伯判别法,证明n(a[n+1]/a[n]-1)<-1,从而级数收敛
实在不懂这题要你证明他们具有相同的敛散性为什么你只想知道1/n那个诶~首先,当n趋近于正无穷的时候1/√n(n+1)(n+2)就约等于1/√n*n*n就等于1/n的2分之3次方.然后两者相除等于1即得
@满足不等式@>3/2因为根号下(2n+1)/根号下n的极限是根号2,也就是说他们是同阶的,原级数收敛等效于级数1/n^(@-1/2)收敛因为级数1/n^p当p>1时收敛,所以有@>3/2
发散啊,不满足级数收敛的必要条件.
100×10的n+1次方×10的n-2次方=10的2次方×10的n+1次方×10的n-2次方=10(2+n+1+n-2)次方=10的(2n+1)次方
先判断是否绝对收敛,如下:
如图所示
y×y的n+1次方—2y的n次方×y的2次方+y的n-1次方×y的3次方=y的(1+n+1)次方-2y的(n+2)次方+y的(n-1+3)次方=y的(n+2)次方-2y的(n+2)次方+y的(n+2)
∑(-1)∧n这个级数是不收敛的,+1-1震荡显然不收敛再问:可是部分和有界啊,部分和要么是-1要么是1要么是0。。再答:这不叫有界啊再答:我刚看了一下,部分和有界判断的是正项级数,这是交错级数,不能
目测是发散的.你那后面那个(-1)^n在分母上吗再问:是在分母上再答:相邻两项有:1/(√n+1)-1/(√(n+1)-1)
收敛.1到n的平方和是1/6*(n+1)*(2n+1),用整个数列的后一项比上前一项,得到1/3,因为绝对值小于1,所以收敛
因为lim(n->∞)[1/(2^n+n)]/(1/2^n)=1而Σ1/2^n收敛所以原级数收敛.
由stirling公式n!根号(2πn)*n^n*e^(-n){[(2的n^2)/(n!)]}^(1/n)=(2^n*e)/[n*(2πn)^(1/(2n))]→无穷(当n→无穷)所以由cauchy判
看不到你发的图片,再问:题目是1/(2^√n)的敛散性答案写2的根号n次方>n^2,再根据两者极限之比求得答案。请问这个n^2是如何找出来的?完全没有思绪,再答:因为Σ1/n^2是收敛的,只要能证明1
级数的通项(n+1)/n^2>n/n^2=1/n,以1/n为通项的级数是发散的,所以根据比较判别法原级数是发散的.
此级数绝对收敛对于lnn/(n*p)这类级数,你可以记住如下结论:p>1,级数绝对收敛这里可以利用函数变化速度快慢这一结论:指数函数>幂函数>对数函数,这个不管是增大的速度还是减小的速度,都成立如果你
y×y的n+1次方—2y的n次方×y的2次方+y的n-1次方×y的3次方=y的n+2次方-2y的n+2次方+y的n+2次方=y的n+2次方-y的n+2次方=0
a[n+1]/a[n]={1/2^[(n+1)/2]}/[1/2^(n/2)]=1/2^(1/2)
只要举出反例即可.令U(n)=(-1)^n/ln(n+1)(+1是为了保证n=1时有意义),则U(n)是趋于零的交错数列,所以由Leibnitz判别法知∑U(n)收敛.(-1)^n*U(n)/n=1/