级数1 根号4n²-3的收敛性

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 05:12:02
级数1 根号4n²-3的收敛性
判断级数 ∑1/3^㏑n的收敛性

再问:谢谢啊!!

级数n+1分之1的收敛性

发散,与调和级数比较(用比较审敛法的极限形式).[1/n]/[1/(n+1)]的极限是1,因此这两个级数同敛散,而调和级数发散,所以这个级数发散.

(n+2)/((n^3+1)^1/2)级数收敛性

发散,用比较判别法的极限形式.经济数学团队帮你解答.请及时评价.谢谢!再问:如果把n^1/2乘进分子又该怎么算?再答:

高数 判断级数收敛性∑(n=1到无穷)(根号(n+1)-根号n)

解:因为sn=根号(n+1)-1所以s=lim(n→无穷)sn=lim(根号(n+1)-1)不存在所以该函数收敛

判断级数(2n+1/3n-1)^(n/2)的收敛性

用根植判别法:lim[(2n+1)/3n-1)^(n/2)]^(1/n)=lim(2n+1)/3n-1)^(1/2)=√(2/3)

1除以n阶乘的级数收敛性

比值判别法limn->无穷u(n+1)/un=1/(n+1)!/1/n!=1/n+1=0所以收敛其实这个级数的值就是e

判断级数的收敛性判断级数∑1/n^+a^收敛性?

这个是收敛的,1/n^+a^<1/n²<1/n(n-1)=1/(n-1)-1/n,n≥2,所以0<∑1/n^+a^<1/(1+a^)+1-1/n,当n趋于无穷,有0<∑1/n^+a^<1/(

n(e^1/n -1)级数的收敛性

该级数发散,分析如图,

判别级数 ∑ n的平方/3的n次方 的收敛性.n=1

收敛.1到n的平方和是1/6*(n+1)*(2n+1),用整个数列的后一项比上前一项,得到1/3,因为绝对值小于1,所以收敛

级数2/3^n-1/n^0.5的收敛性

一个收,一个发,所以还是发散再问:一个收敛,一个发散,就一定是发散吗?请问有证明之类的过程吗?再答:不一定,你这道前面等比,后面p,容易判断再问:你确定吗?再答:看级数1/n^0.5-2/3^n吧,n

微积分 判断级数∑(n=1,∞)n^n/3^n*n!的收敛性

达伦贝尔判别法,结果是e/3再问:可以给我写一下详细的步骤吗?实在是辛苦了,我不太懂。如果能用图画写出来,发图就实在是太太感谢了再答:

判断级数ln(n+1分之n)的收敛性

利用定义∑ln[n/(n+1)]=∑[lnn-ln(n+1)]=(ln1-ln2)+(ln2-ln3)+(ln3-ln4)+···+[lnn-ln(n+1)]+···当n→+∞时,部分和Sn=(ln1

判断级数∑(n/3^n)的收敛性,n∈[1,∞)

因原级数是正项级数,使用比值审敛法,当n-->无穷大时,lim(n+1)3^(n+1)/[n/3^n]=1/3

讨论级数∑1/(ln(n)^n)的收敛性

因为1/(ln(n)^n)开n次方=1/(ln(n))它的极限=0再问:他是要求讨论的,应该分情况啊再答:不需要,除非你字母搞错乱了。

判断级数(n=1→∞)∑(3^n)/(n!)的收敛性

解lim(n→∞)【3^(n+1)/(n+1)!】/【(3^n)/(n!)】}=lim(n→∞)【3/n+1】=0

求级数1/(1+1/n)^n的收敛性

发散,当n→∞时,1/(1+1/n)^n→1/e,不满足级数收敛的必要条件(通项趋于0),故级数发散

讨论级数sin(nπ/4)/n^2 n从1趋向于无穷大的绝对收敛性与条件收敛性

级数通项绝对值小于等于1/n^2,所以绝对收敛.

级数sin(n+1/n)π的收敛性

sin(n+1/n)π=sin(π+π/n)=-sin(π/n)即只需要判断-sin(π/n)的收敛性而limsinx/x=1【x趋向于0时,在这里就是sin(π/n)与(π/n)的极限是1,即是同阶

级数收敛性1/(1*2)+1/(2*3)+.1/(n*(n+1)).的收敛性,若收敛和是多少

1/(n*(n+1))=1/n-1/(1+n)Sn=1/(1*2)+1/(2*3)+.1/(n*(n+1))=1-1/(1+n)趋于1所以级数收敛且收敛于1