级数an的平方收敛,bn的平方也收敛

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 22:01:14
级数an的平方收敛,bn的平方也收敛
为什么n分之一的级数是发散n平方分之一的级数是收敛

给你一个好证明!我们计算一下取平面上的点使得两个坐标互素的可能性.记为p,那么坐标最大公约数是2的可能性是4p.同理有9p.加起来,用全概率是1,知道1/p=n平方分之一的级数和.因为p不为0所以收敛

级数an的平方收敛,an>0,求证级数an除以n收敛

这个题很经典的,用基本不等式就可以做.省去下标∑an/n=∑(1/n)*a_n

若级数∑an^2和∑bn^2都收敛,求证:∑an的绝对值/n收敛

用比较判别法证明.经济数学团队帮你解答.请及时评价.

若级数an发散,级数(an+bn)收敛则级数bn为什么是发散的?

如:an=n²,发散的,an+bn=1/n,是收敛的,此时bn=-n²+(1/n)还是发散的.

证明级数的收敛若级数an(n从1到无穷)收敛,数列bn收敛,证明级数anbn(n从1到无穷)收敛,提示说用柯西收敛准则,

这题明显少条件,如果bn是单调的就可以了.否则结论不成立.反例:an=(-1)^n/n^(1/2),级数an收敛.bn=(-1)^n/n^(1/2),数列bn收敛于0,但级数anbn=级数1/n是发散

若lim(n的平方×Un)存在,且n趋近于无穷,证明级数sei'ge'maUn收敛

因为limn^2*un存在,于是n^2*un有界,即存在M>0,使得|n^2*un|

级数∑Bn,∑An-A(n-1)收敛,证明∑An*Bn收敛

∑An-A(n-1)=limAn-A1,所以An极限存在,极限存在的数列必有界设|An|≤M,那么由∑Bn收敛,可以知道∑An*Bn绝对收敛,因此该级数必然收敛

高数:如何判断级数n的平方分之一是收敛的

只要证明其和极限存在即可.从第二项开始.1/(n^2)小于1/(n-1)-1/n.这样可以证明这个和的极限小于2.又这个级数显然是递增的,由单调有界数列必有收敛,可知原级数收敛

级数收敛性的证明求:设∑an^2收敛,证明:∑an/n绝对收敛?

证明:∑an^2收敛,所以,∑|an|收敛,所以,∑|an|/n收敛,所以,∑an/n绝对收敛.

设级数∑an、∑bn均收敛,则它们的柯西乘积是否收敛?

不一定,只有当级数an,bn都是正项级数级数时柯西乘积才收敛如果an=[(-1)^n]/√n,bn=2*[(-1)^n]/√nan*bn=2/n,是发散的再问:∑an=∑[(-1)^n]/√n,∑bn

设两个级数都收敛,证明两个级数和的平方也收敛

an,bn收敛知an->0,bn->0an再问:但这不是正项级数再答:和正项级数有什么关系?你哪没看懂再问:an的平方怎么收敛的再答:老师给了个反例反例a_n=b_n=(-1)^n/n^0.1,刚才默

调和级数是发散的,但是 n平方分之1 这个级数为什么就收敛啊 怎么证明?

级数∑1/n^2的前n项和sn=1+1/2^2+1/3^2+……+1/n^2是递增的,且sn

正项级数 an 收敛 bn小于等于an 则级数 bn 收敛 怎么证明?

这个是定理啊,大收敛推出小收敛,基本上不用证明.如果非要证也很简单,写一写定义就可以了.再问:老师问我们为什么--我该怎么说求解~再答:你是什么专业的?用e-N定理说一下就出来了。对任意e>0存在N,

级数的绝对收敛

答案a>1由于a>0,故1+a^n>0.加绝对值无所谓①01通项极限为0.用根值判别法,对通项1/(1+a^n)开n次方,结果是1/a,满足收敛条件,收敛半径是a.故答案就是a>1这是我自己的方法,这

高数证明题!若数列{nan}有界.证明级数(an的平方)收敛!

nan《M,则an《m/n,(an)^2《m^2/n^2,而级数1/n^2收敛,故由大M判别法知原级数收敛.你懂得?

函数收敛和发散问题!函数An收敛,Bn发散,那An*Bn的敛散性是什么啊?

不一定An=1/nBn=nAn*Bn收敛An=n/(n+1)Bn=n+2An*Bn发散

级数an与bn都发散,(an平方+bn平方)发散吗?

不一定发散再问:能具体解释下吗?不明白啊……求教再答:比如an=sin(nπ)bn=cos(nπ)然后不就有结论了吗?再问:sin(nπ)不是都等于0吗?那样an不就收敛了……sin(nπ)平方加上c

设An>0,级数An收敛,Bn=1-ln(1+An)/An,证明级数Bn收敛

再答:如果你认可我的回答,敬请及时采纳,在右上角点击“采纳回答”即可。再问:能不能再帮我解决几个问题?再问:再答:你发提问吧,我看到会解答的再问:第六题和第七题,很急啊,再答:傅里叶啊,计算量太大了再