级数un收敛,级数Vn发散,证明级数un vn发散
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:44:07
不确定,可能收敛也可能发散,以un+vn为例,举最简单的例子,设un=vn=1/n,它们都发散,un+vn=2/n也发散,设un=1/n,vn=-1/n,它们也都发散,但un+vn=0收敛.
若正项级数un收敛,则un收敛到0,即存在N,当n>N时,un
后半句是对的,前半句错,一个简单的例子就是1/n
反证法:若级数(un+vn)收敛,则级数(vn)=级数(un+vn-un)=级数(un+vn)-级数(un)收敛.矛盾.
用比较判别法证明.经济数学团队帮你解答.请及时评价.
(un+vn)^2=(un)^2+2unvn+(vn)^2《(un)^2+2|unvn|+(vn)^2《2[(un)^2+(vn)^2]级数∑(un)^2∑(vn)^2都收敛,所以级数2[(un)^2
如级数vn收敛,则vn->0,而1/vn->无穷,所以,级数1/vn不可能收敛
正项级数Sn-S(n-1)=un>0,即Sn>S(n-1),所以un/Sn^2
发散.级数其实就是-1/(4n+1),与-1/n的敛散性相同,所以发散再问:用比较审敛法的极限形式,除以-1/n,等于1/4,又因为-1/n发散,所以原级数发散,对吧?再答:没错
由于当n趋于无穷时,un趋于0,vn趋于0,因此当n充分大时有0
你有问题也可以在这里向我提问:
对于正项级数来说是成立的,但对于任意项级数来说则不一定成立了再问:能举个例子吗?再答:比如说级数un=(-1)^n/√n显然交错级数收敛而vn=(-1)^n/√n+1/n易知limvn/un=1但vn
不能.考虑数列u(n)=1,v(n)=1,符合要求,但sigma(min(un,vn))显然发散.考虑数列u(n)为0,-1,0,-1,...,而数列v(n)为-1,0,-1,0,...,符合要求,但
知limn/(lnn)^9->∞那么存在N足够大,使得当n>N时,1/n*1/lnn(1->N)∑1/(lnn)^10+(N+1->∞)∑1/n*1/lnn而∑1/n*1/lnn由比较积分得知O(∑1
∑(Un+Vn)肯定发散!证明:假如∑(Un+Vn)收敛,那么∑Vn=∑[(Un+Vn)-Un]=∑(Un+Vn)-∑Un,∑(Un+Vn)和∑Un都收敛,则它们的差∑Vn也收敛,这是和条件相抵触的,
是发散的,可以用级数收敛的必要条件来判断.经济数学团队帮你解答.请及时评价.
这是错的.比如Un=1/n
这个级数是收敛的,而且由于是正数,还是绝对收敛的,因为ln(n+1)比n小很多,就是说它的增长速度非常小,(lnn)/n趋于0当n趋于无穷时,可以把原式除以1/n^2,这个是收敛的,而且比值是0,所以
是否差条件?级数Vn绝对收敛?再问:不是,就只有收敛。请问下,能证明级数Un收敛吗?再答:Un=1,级数Un-Un-1收敛Vn=(-1)^n/n,级数Vn收敛UnVn条件收敛再问:不明白,不过能证明级
不一定,比如Un=-/n,Vn=1/nWn=1/n²再问:第一个怎么证明再答:0