级数敛散性sinx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:42:34
根据莱布尼兹判敛法,an+1<an,liman=0可以判定收敛.根据其正项级数sinx/n通项等价于x/n(可以用比较法的极限形式),所以正项级数发散,所以原级数是条件收敛.再问:这道题这样答好像不对
根据莱布尼兹判别法,要证两点:1、通项n充分大以后,un单调递减2、n趋于无穷时,un极限为0下面先证1.un>u(n+1).(1)lnn/n>ln(n+1)/(n+1)(n+1)lnn>nln(n+
发过去了
点击放大:再问:能求下收敛区间及收敛半径吗?谢谢哦再答:再问:这里应该是0*x^2=0吧?再答:没有差别。0×4x²=0×x²再问:差别大了,4x^2是说分子不变,那也不会是0了呀
收敛,用比较判别法.经济数学团队帮你解答.请及时评价.再问:可答案是发散…没有过程再答:那个答案肯定是印错了,我是教这个的,有绝对的把握。再问:谢谢啦
sinx=x-x^3/3!+x^5/5!-...(-1)^(k-1)*x^(2k-1)/(2k-1)!+Rn(x)(-∞
1)该级数发散.∵(2n-1)/(2n)当n趋于无穷时等于1.2)该级数收敛.当n趋于无穷时,(1/2)^n、(1/3)^n都趋于0,原式=1/2+(1/2)²+(1/2)³+……
∑(n=0,∝)2^nsin(π/3^n)当n趋于无穷大时sin(π/3^n)~π/3^n所以∑(n=0,∝)2^nsin(π/3^n)与∑(n=0,∝)2^n(π/3^n)=∑(n=0,∝)π(2/
用比较判别法的极限形式,该级数收敛.经济数学团队帮你解答.请及时评价.
比较n·(1+ln^2n)>n·ln^2n,然后取倒数对n从2到无穷积分,可知是收敛的再问:有没有具体点的过程再答:过程有,但是这个上面不好写
用比值判别法经济数学团队为你解答,有不清楚请追问.请及时评价.
用反证法:若Σa(2n-1)收敛,则因Σa(2n)收敛,得知Σ[a(2n-1)+a(2n)]收敛,而Σa(n)是正项级数,因而是收敛的,矛盾.故Σa(2n-1)发散. 该题应选D.
n>=2时对积分里面的函数求导可以得到0=2时每一项都小于1/n^1.5而后者组成的级数收敛,这些都是正项级数,根据正项级数的比较判别法,所给的级数收敛.如果对正项级数的比较判别法(貌似就是Weier
n趋于完全时:limcosπ/n=1不趋于0,级数发散.
1/ln(n+1)>1/(n+1),级数1/(n+1)发散,所以级数1/ln(n+1)发散.
由比值法后一个级数收敛,根据比较判别法前一个级数收敛
这个推导不太严谨..但让我们不得不佩服欧拉大神啊...首先展开sinx/x=1-x^2/3!+x^4/5!+.然后利用sinx/x的零点,容易知零点为nπ所以sinx/x=(1-x/π)(1+x/π)