级数绝对收敛,那么级数的平方也收敛

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:46:21
级数绝对收敛,那么级数的平方也收敛
级数的一致收敛和绝对收敛怎么证明

级数的一致收敛用魏尔斯特拉斯判别法证明.级数的绝对收敛即判断级数每项加绝对值号形成的正项级数的敛散性,可根据比较判别法,比值判别法,根值判别法等进行证明.

级数的绝对收敛与条件收敛的一道题

首先考虑a=[In(n^2+1)]/n^tt>0则lima=lim[2n/(n^2+1)*t*n^(t-1)](洛比达法则)=lim[2n^2/t*(n^2+1)]*[1/n^t]=0考虑绝对收敛当p

级数绝对收敛

A的级数单项取绝对值之后变为1/n,是指数为1的调和级数发散(调和级数1/n^p,指数p需大于1才收敛)B的级数单项取绝对值之后变为1/lnn>1/n>0,由比较判别法,所以发散C的级数单项取绝对值之

设两个级数都收敛,证明两个级数和的平方也收敛

an,bn收敛知an->0,bn->0an再问:但这不是正项级数再答:和正项级数有什么关系?你哪没看懂再问:an的平方怎么收敛的再答:老师给了个反例反例a_n=b_n=(-1)^n/n^0.1,刚才默

条件收敛级数与绝对收敛级数的一个问题

①前一个级数的绝对值级数【1/(n*n)】是收敛的,故前一个级数绝对收敛②后一个级数本身是收敛的,但是它的绝对值级数【1/n】是发散的,故后一个级数是条件收敛①②都是根据条件收敛、绝对收敛的定义得到的

为什么说级数绝对收敛,级数必定收敛?

浅显易懂的说明?你想意会一下吗?好好理解一下书上关于级数的基本概念和判定,不难“意会”我叙述两种方法,都是书上的,个人认为方法②比较形象.严格东西如果笼统的说,其实相当于什么都没说.①用无穷级数的柯西

级数的绝对收敛

答案a>1由于a>0,故1+a^n>0.加绝对值无所谓①01通项极限为0.用根值判别法,对通项1/(1+a^n)开n次方,结果是1/a,满足收敛条件,收敛半径是a.故答案就是a>1这是我自己的方法,这

函数项级数绝对收敛的定义是什么.若他绝对收敛是否一定一致收敛?

就是每一项都取绝对值后都收敛,若绝对收敛,必然他收敛,希望对你有所帮助!

证明级数绝对收敛 

再问:万分感谢再答:不客气,我也正在学,练练手

判断级数的敛散性 若收敛 是条件收敛还是绝对收敛

 再问:这个用的什么方法再答:判断收敛性可以使用等价无穷小再问:不太懂再答:结合我写的步骤看啊再问:好的

判定下列级数的敛散性,如果收敛,是绝对收敛,还是条件收敛

因为\cosna/n³\≤\1/n³\因为Σ1/n³收敛所以Σ\cosna/n³\收敛从而原级数绝对收敛.

常数项级数敛散性的判别,如是收敛,是绝对收敛还是相对收敛.

首先,容易证明2^k>k对任意k≥1成立.因此2^(n²)=(2^n)^n>n^n≥n!.级数通项的绝对值2^(n²)/n!≥1,不能收敛到0.因此级数发散.

一道关于级数绝对收敛和条件收敛的题目

第二步用的是比较审敛法,和P-级数的结论再问:比较审敛法是什么再答:正项级数审敛的一种最基本的方法:形象的说:大收则小收,小散则大散

一个绝对收敛级数和一个条件收敛级数的和是什么级数

只可能条件收敛an绝对收敛,bn条件收敛an+bn=cn如果cn绝对收敛,那么bn=cn-an绝对收敛,矛盾

级数的收敛问题级数sin n/n方的收敛性?(发散,条件收敛,绝对收敛?)

因为sinn=n-n^3/3!+aa是高阶无从小.那么级数sin/n=1-n^2/3!,由于1-n^2/3!当n->无从时不趋于零.所以原级数发散.