ln(1 1 n)敛散性

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:20:56
ln(1 1 n)敛散性
级数1/(a^(ln n))的敛散性(a>0)

n≥1.当01,u=1/a^(lnn)=1/[e^(lnn)]^p=1/n^p,则级数收敛.

级数n从1到无穷 ln(n*sin(1/n))判断敛散性

泰勒级数展开,sin(1/n)~=1/n-(1/n)^3/6=1/n-6/n^3,所以nxsin(1/n)~=1-6/n^2,所以ln(nxsin(1/n))~=-6/n^2,所以求和是收敛的,因为1

级数ln(1+1/n)的敛散性怎么看得出来

ln(1+x)/x-->1(x-->0)所以该级数跟调和级数敛散性一样,发散

级数∑ln(n+1/n)的敛散性是什么,

由limln(1+1/n)/(1/n)=1有原级数与∑1/n有相同敛散性.所以原级数发散

级数的敛散性题目 Σ(1/n - ln(n+1)/n)的敛散性怎么判断?

由于当x趋于0时,lim【x-ln(1+x)】/x^2=lim【1-1/(1+x)】/2x=1/2,因此有1/n-ln(1+1/n)等价于1/(2n^2),故原级数收敛.

ln(1+1/n)

随着n的增加,ln(1+1/n)有界,并收敛于1/n

判断正项级数的敛散性(1/√n)*ln(n+1/n-1)

ln(n+1/n-1)=ln(1+2/n-1),n趋于无穷时,ln(1+2/n-1)1的时候级数收敛.所以原式收敛.懂没?

判断级数(-1)∧n ln(n)/n的敛散性

是条件收敛.首先由于当n趋于正无穷时,ln(n)/n->0,所以这是一个Leibniz级数,Leibniz级数必定收敛,所以该级数收敛.又显然:|(-1)^n*ln(n)/n|=ln(n)/n>1/n

证明ln(n+1)

当x>0时,有个常用不等式:ln(1+x)

正项级数(n-√n)/(2n-1)还有1/√n*ln(n+1/n-1)还有√(2n-1/3n+2)的敛散性

第一个,2n-1~2n,所以(n-√n)/(2n-1)~(n-√n)/2n=1/2--1/2√n,因为1/√n>1/n,所以是发散的也可求极限,极限不是0.所以发散第二个,发散ln(n+1/n-1)~

求级数敛散性,n从2到无穷大,(根号下n)分之一乘ln [(n+1)/(n-1)]

除以(根号下n)分之一与n-1分之2,判断下面敛散性即可

求级数敛散性:Un=1/(n*(ln n)^p*(ln ln n)^p) 其中(p>0,q>0)

Un=1/(n·(ln(n))^p·(ln(ln(n)))^q).首先考虑通项为An=1/(n·(ln(n))^p)的级数.通项非负单调递减,根据Cauchy积分判别法,级数收敛当且仅当∫{10,+∞

∑1/ln(n+1)敛散性

正项级数,用比值审敛法:lim(n→∞)u(n+1)/un=[1/ln(n+2)]/[1/ln(n+1)]=lim(n→∞)ln(n+1)/ln(n+2)<1,级数收敛

∑1/(ln n)^n敛散性

这道题用根值法就能直接得出结论当n趋于无穷大时,lim(1/lnn)=0,根据根值法定义,当此极限小于1时,即可判定级数收敛.PS:根值法,又叫柯西判别法,在有些书中可能省略了,可以查看同济版高等数学

(ln n)分支1的敛散性怎么判断

lnn1/n,由比较判别法,级数发散

ln(1+n)

先考虑由函数y=1/x,x=1,x=n+1,y=0所围成的面积但在区间[i,i+1],有:S(i)=∫[i,i+1]dx/x∑[i=1,n]1/(i+1)=1/2+…+1/n+1/(n+1)∴1+1/

ln(n-1)!=ln2+...+ln(n-1)

你都已经画好了,首先应该是从1积分到n,0那个瑕点积分是发散的,然后不等式右边你可看成是ln2为高,1为底的矩形面积,也就是你画的图中,在lnX曲线下的那些虚线矩形面积之和.类似的,不等式右边你可以看