ln(1 1 n)的泰勒级数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:24:39
ln(1 1 n)的泰勒级数
级数1/(a^(ln n))的敛散性(a>0)

n≥1.当01,u=1/a^(lnn)=1/[e^(lnn)]^p=1/n^p,则级数收敛.

级数ln(1+1/n)的敛散性怎么看得出来

ln(1+x)/x-->1(x-->0)所以该级数跟调和级数敛散性一样,发散

级数∑ln(n+1/n)的敛散性是什么,

由limln(1+1/n)/(1/n)=1有原级数与∑1/n有相同敛散性.所以原级数发散

级数的敛散性题目 Σ(1/n - ln(n+1)/n)的敛散性怎么判断?

由于当x趋于0时,lim【x-ln(1+x)】/x^2=lim【1-1/(1+x)】/2x=1/2,因此有1/n-ln(1+1/n)等价于1/(2n^2),故原级数收敛.

求ln(1+x^2)的n阶导数,怎么用泰勒公式做呢?

先利用函数ln(1+x)的幂级数展开式ln(1+x)=∑(-1)^nx^(n+1)/(n+1),n=0到∞求和于是y=ln(1+x²)=∑(-1)^nx^(2n+2)/(n+1)依次求导可得

ln(1-x)的泰勒级数展开是什么?

然后你把图中的x用-x代替即可,容易发现所有的项都变成了负号

泰勒级数展开式,y=arcsinx.求y(0)的N阶导数.

提示:用到二项展开式(1+x)^a=1+a*x+a*(a-1)/2!*x^2+a*(a-1)*(a-2)/3!*x^3+...+a*(a-1)*(a-2)*...(a-n+1)/n!*x^n+...=

任何有n阶导数的函数都有泰勒级数的表达吗

有.但f(x)的泰勒级数未必收敛于函数f(x),那么这样的泰勒级数也没有讨论的意义,所以从函数f(x)的泰勒级数是否收敛于f(x)这个角度来说,函数只有“可导”的条件是不足以保证泰勒级数存在的.例如f

讨论级数 (-1)^n * ln(1+n) / (1+n) (n由1到正无穷的级数)的敛散性,

设y=ln(1+x)/(1+x)(x>2)因y'=[1-ln(1+x)]/(1+x)^21/n而∑1/n发散,故原级数不是绝对收敛

判断级数ln(n+1分之n)的收敛性

利用定义∑ln[n/(n+1)]=∑[lnn-ln(n+1)]=(ln1-ln2)+(ln2-ln3)+(ln3-ln4)+···+[lnn-ln(n+1)]+···当n→+∞时,部分和Sn=(ln1

级数ln n/n^2的收敛性

∵limn->∞时,lnn/n²~1/2n²∵1/n²收敛∴lnn/n²收敛

ln(1+n)的泰勒级数如何展开?特急!

令f(x)=ln(1+x),则f(x)的k阶导数为fk(x)=(k-1)!(-1)^(k+1)/(1+x)^k;(k-1)的阶乘,乘以-1的k+1次方,除以(1+x)的k次方f(x)=f(x0)+∑f

讨论级数∑1/(ln(n)^n)的收敛性

因为1/(ln(n)^n)开n次方=1/(ln(n))它的极限=0再问:他是要求讨论的,应该分情况啊再答:不需要,除非你字母搞错乱了。

泰勒级数带皮亚诺余项的问题

这个只能说与sinx的展开式有关sinx=x-x^3/6+x^5/(5!)-x^7/(7!)+x^9/(9!)+.所以第四项是O(x^7).这样写成第一个o(x^6)相对要精确点.但是按照皮亚诺余项定