ln(1 1 n)的泰勒级数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:24:39
n≥1.当01,u=1/a^(lnn)=1/[e^(lnn)]^p=1/n^p,则级数收敛.
ln(1+x)/x-->1(x-->0)所以该级数跟调和级数敛散性一样,发散
由limln(1+1/n)/(1/n)=1有原级数与∑1/n有相同敛散性.所以原级数发散
n≥20
由于当x趋于0时,lim【x-ln(1+x)】/x^2=lim【1-1/(1+x)】/2x=1/2,因此有1/n-ln(1+1/n)等价于1/(2n^2),故原级数收敛.
先利用函数ln(1+x)的幂级数展开式ln(1+x)=∑(-1)^nx^(n+1)/(n+1),n=0到∞求和于是y=ln(1+x²)=∑(-1)^nx^(2n+2)/(n+1)依次求导可得
然后你把图中的x用-x代替即可,容易发现所有的项都变成了负号
提示:用到二项展开式(1+x)^a=1+a*x+a*(a-1)/2!*x^2+a*(a-1)*(a-2)/3!*x^3+...+a*(a-1)*(a-2)*...(a-n+1)/n!*x^n+...=
有.但f(x)的泰勒级数未必收敛于函数f(x),那么这样的泰勒级数也没有讨论的意义,所以从函数f(x)的泰勒级数是否收敛于f(x)这个角度来说,函数只有“可导”的条件是不足以保证泰勒级数存在的.例如f
设y=ln(1+x)/(1+x)(x>2)因y'=[1-ln(1+x)]/(1+x)^21/n而∑1/n发散,故原级数不是绝对收敛
利用定义∑ln[n/(n+1)]=∑[lnn-ln(n+1)]=(ln1-ln2)+(ln2-ln3)+(ln3-ln4)+···+[lnn-ln(n+1)]+···当n→+∞时,部分和Sn=(ln1
∵limn->∞时,lnn/n²~1/2n²∵1/n²收敛∴lnn/n²收敛
令f(x)=ln(1+x),则f(x)的k阶导数为fk(x)=(k-1)!(-1)^(k+1)/(1+x)^k;(k-1)的阶乘,乘以-1的k+1次方,除以(1+x)的k次方f(x)=f(x0)+∑f
当p>1时,1/n^plnn
因为1/(ln(n)^n)开n次方=1/(ln(n))它的极限=0再问:他是要求讨论的,应该分情况啊再答:不需要,除非你字母搞错乱了。
这个只能说与sinx的展开式有关sinx=x-x^3/6+x^5/(5!)-x^7/(7!)+x^9/(9!)+.所以第四项是O(x^7).这样写成第一个o(x^6)相对要精确点.但是按照皮亚诺余项定
因为在这个区间内级数收敛.
我给你发