ln(1 2^x 3^x) x的极限

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 00:02:13
ln(1 2^x 3^x) x的极限
ln(x-1)*lnx x趋向于1的极限

x→1limln(x-1)*lnx=limln(x-1)*ln(1+x-1)利用等价无穷小ln(1+x)~x=limln(x-1)*(x-1)换元t=x-1=lim(t→0)lnt/1/t该极限为∞/

(ln x)/x(x趋向无穷大)的极限

分子分母均趋于无穷大,按罗必塔法则,对分子分母分别取导数,得(1/x)/1=1/x,1/x趋于0,所以原极限也趋于0.再问:没学洛必达法则该怎么做?

对数函数的极限 lim(x→0) [ln(1+x)-ln(1-x)]/x

ln(1+x)-ln(1-x)=ln[(1+x)/(1-x)]=ln[1+2x/(1-x)]x→0,等价无穷小代换ln[1+2x/(1-x)]~2x/(1-x)lim(x→0)[ln(1+x)-ln(

x*ln(x+1)/(x+1)*lnx的极限

趋近于极限后x+1----xln(x+1)------x+1-----xlnx-----x所以原式为x^2/x^2=1再问:我看很多都说lim(lnx/x)=0(x趋向于正无穷)那原式也要变0了再答:

求ln(1+x)/x的极限

是x趋于0吗此时ln(1+x)和x是等价无穷小所以极限=1

lim ln(1+x)的极限x---0

lim(x→0)ln(1+x)=ln(1+0)=ln1=0很高兴为您解答,祝你学习进步!【学习宝典】团队为您答题.有不明白的可以追问!如果您认可我的回答.请点击下面的【选为满意回答】按钮,谢谢!再问:

求lim(ln(1+x^n)/ln^m(1+x))的极限(x趋于0)

用等价无穷小代换lim(x→0)(ln(1+x^n)/ln^m(1+x))=lim(x→0)x^n/x^m=lim(x→0)x^(n-m)若n>m,则极限为0若n=m,则极限为1若n

ln(sinx/x)在x→∞的极限

x→∞时,sin是有界量,而1/x是无穷小量,所以sinx/x在x→∞的极限为0

高数极限解答x[ln(x+a)-lnx]当x趋于穷大时的极限

lim[x→∞]x[ln(x+a)-lnx]=lim[x→∞]xln[(x+a)/x]=lim[x→∞]xln(1+a/x)注意:ln(1+a/x)与a/x等价=lim[x→∞]x(a/x)=a希望可

lim ln(sinx/x)的极限.x趋向于0

x→0:limln(sinx/x)=lnlim(sinx/x)=ln1=0

x趋于O时,{x+ln(1+x)}除以{3x-ln(1+x)}的极限怎么求

limx->0{x+ln(1+x)}/{3x-ln(1+x)}因为当x=0时x+ln(1+x)=03x-ln(1+x)=0所以应用罗必塔法则,即对分子分母分别求导得:原式=limx->0{x+ln(1

ln x的ln x次方的极限

lnx的lnx次方的极限x趋向于1+属于“0的0次方”型未定式.令t=lnx,t趋向于0+首先对t的t次方取对数,为tlnt,再写为lnt/(1/t)当t趋向0+时,lnt/(1/t)是“无穷比无穷”

ln(1+x)/x的极限为什么是1?

当x趋于0时,ln(1+x)和x都是无穷小量所以根据洛必达法则x->0limln(1+x)/x=lim1/(1+x)=1另外,也可以用夹逼准则来证明

lnx/ln(lnx)在x~无穷大的极限

极限是无穷大,直接用罗比达法则再问:能具体点吗?再答:

x趋向于0+,[ln(1/x)]^x的极限?

1t=1/x,t趋向于+无穷,lnt^(1/t)取对数得:ln(lnt)/t分子分母求导:1/(tlnt)为0e的0次方为1,即为答案

limx[ln(x+1)-lnx]的极限

是求x[ln(x+1)-ln(x)]的极限吧?lim(x->∞)x[ln(x+1)-ln(x)]=lim(x->∞)ln((x+1)/x)/(1/x)(0/0型罗比塔法则)=lim(x->∞)(x/(

求lim(x趋于无穷大)(ln(x^2-x+1)/ln(x^10+x+1))的极限

这个题目 不用洛必达法则真的很难做

x趋于0时 ln(1+x)/sinx的极限?

x趋于0ln(1+x)和x是等价无穷小sinx和x也是等价无穷小所以=x/x=1

limx趋于无穷大时求x[ln(x-2)-ln(x+1)]的极限

lim(x→∞)x[ln(x-2)-ln(x+1)]=lim(x->∞)[ln(x-2)-ln(x+1)]/(1/x)=lim(x→∞)[1/(x-2)-1/(x+1)]/(-1/x^2)=lim(x