ln(1 x)在x=3处的展开
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:12:23
因为ln(1+x)=x-x^2/2+x^3/3-...+(-1)^(n+1)x^n/n+...所以f(x)=ln(1-x)=ln(1+(-x))=(-x)-(-x)^2/2+(-x)^3/3+...+
泰勒公式的核心之一是要构造无穷小量,即极限为零的量和一个非零量,然后进行展开,这里的构造也是这个道理,x-2就相当于无穷小量
解题过程在图片中哦...
先求ln(1+x)在0处的泰勒展式,这个你不能不会.然后把式子里面的x替换成x^2就好了.看到我得先后顺序没?你看看书.,上面得例题,老兄“他展开时的各级导数不一样的”发现你似乎对泰勒级数不太了解.啊
∵ln(1+x)=∑(-1)^(n-1)x^(n+1)/n∴f(x)=∑(-1)^(n-1)x^(n+3)/n再问:谢谢!可是我的课本讲ln(1+x)的麦克劳林展开式是:x-(x^2)/2+(x^3)
利用已知级数 1/(1+x)=∑(n=1~inf.)(-x)^(n-1),|x|积分,可得 ln(1+x)=∫[0,x][1/(1+t)]dt=∑(n=1~inf.)∫[0,x](-t)^(n
然后你把图中的x用-x代替即可,容易发现所有的项都变成了负号
参考http://zhidao.baidu.com/question/538153965.html?from=pubpage&msgtype=2
一般的,f(x)在x=x0处展开成幂级数为:f(x)=f(x0)+f(x0)'(x-x0)+f(x0)''(x-x0)²/2+f(x0)"'(x-x0)³/3!+……+f(x0)(
f(X)=(1+x)ln(1+x)=ln(1+x)+xln(1+x)ln(1+x)=x-x^/2+x^3/3-……+(-1)^nx^n/n代入化简即可.
令g(x)=ln(1+x),g(0)=0;[ln(1+x)]'=1/(1+x),g'(0)=1;[ln(1+x)]''=-1/(1+x)^2,g''(0)=-1;[ln(1+x)]'''=2/(1+x
f′(x)=ln(1+x)+1=[∑(n从1到∞)(-1)^(n-1)x^n/n]+1f(x)=∫(0到x)f′(x)dx+f(0)=∫(0到x){[∑(n从1到∞)(-1)^(n-1)x^n/n]+
f'(x)=-2x/(1-x²)f''(x)=[-2(1-x²)-(-2x)(-2x)]/(1-x²)²=-2(1+x²)/(1-x²)
ln(1+x)=∫[1/(1+x)]dx=∫(1-x+x^2-x^3+……+x^n+……)dx=x-(x^2/2)+(x^3/3)-(x^4/4)+……+[(-1)^(n+1)](x^n/n)+……(
第一问:把sinx也按泰勒公式展开,带进去,如sinx展开为四项,sinx^2展开为两项,后面的依次为一项,一项,将上述带进去再加总...大于x^4的都不要第二问:相加等于小的那个字母,这是公式o(x
原式=ln(1+x)+ln(1+x^2)=sigma[(-1)^n*x^n/n!]+sigma[(-1)^n*(x^2)^n/n!]=sigma{(-1)^n*[x^n+x^(2n)]/n!}其中,s