ln(1-2x)的2阶带佩亚诺
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 07:08:19
limx[ln(2x+1)-ln(2x)]=limx[ln(2x+1)/2x]=limln[1+1/2x]^x=limln[1+1/2x]^(2x.1/2)=limlne^(1/2)=1/2
∫ln(x+√(1+x^2))dx=xln(x+√(1+x^2)-∫xd(ln(x+√(1+x^2))[ln(x+√1+x^2)]'=[1+x/√(1+x^2)]/(x+√(1+x^2))=1/√(1
y'=[ln(x+√(1+x²))]'=1/(x+√(1+x²))*[x+√(1+x²)]'=1/(x+√(1+x²))*[1+2x/2√(1+x²)
复合函数的求导令x²-1=tf(x)=Intf'(x)=Int'*t'=1/(x²-1)*2x=2x/(x²-1)
两边相加都是0,没啥意义啊,我有一种方法
y=ln[x(2x+1)]=ln(2x^2+x)所以:y'=[1/(2x^2+x)]*(2x^2+x)'=[1/(2x^2+x)]*(4x+1)=(4x+1)/(2x^2+x).如果是:y=lnx*(
(e^e^x)'=(e^e^x)*(e^x)'=(e^e^x)*(e^x)(ln3(x+1)^2)'=1/3(x+1)^2*(3(x+1)^2)'=(1/3(x+1)^2)*(6(x+1))=2/(x
(u/v)'=(u'*v-u*v')/v²这里u=x,v=√(x²+1)=(x²+1)^(1/2)u'=1v'=1/2*(x²+1)^(1/2-1)*(2x)'
(2ln(1+x))/(1+x)
课本上的例题看不懂啊,是不理解复合函数求导问题吧lnx求导=1/xln(f(x))求导=1/f(x)乘以f(x)的倒数,ok,问题解决了.
这个题目 不用洛必达法则真的很难做
(ln(2-x))'=(2-x)'*(1/(2-x))=-1/(2-x)=1/(x-2)ax=af'(x)=1/(x-2)+a这里涉及到复合函数的求导问题假设f(x)=ln(1-x)令g(x)=1-x
lim(x→∞)x[ln(x-2)-ln(x+1)]=lim(x->∞)[ln(x-2)-ln(x+1)]/(1/x)=lim(x→∞)[1/(x-2)-1/(x+1)]/(-1/x^2)=lim(x
1.e^(e^x+x)2.2/(x+1)3.-2/(x^2-1)都是复合函数求导再问:可以给我一下过程么。。