ln(x 1)幂级数展开式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:48:46
ln(x 1)幂级数展开式
将f(x)=ln(1-x)展开成x的幂级数,则展开式为

因为ln(1+x)=x-x^2/2+x^3/3-...+(-1)^(n+1)x^n/n+...所以f(x)=ln(1-x)=ln(1+(-x))=(-x)-(-x)^2/2+(-x)^3/3+...+

正弦与余弦的幂级数展开式

用泰勒级数令x0=0则f(x)=sinx=f(0)+f'(0)/1!*(x-0)+f''(0)/2!*(x-0)^2+……+f(n)(0)/n!*(x-0)^n+……f'(x)=cosx,f''(x)

求函数ln(x+√(1+x^2))在x=0处的幂级数展式,并求展开式成立的区间

(ln(x+√(1+x^2)))'=1/(√(1+x^2))=(1+x^2)^(-1/2)(1+x^2)^(-1/2)=1-(1/2)x^2+(-1/2)(-1/2-1)/2!(x^4)+(-1/2)

函数的幂级数展开式的问题

我们知道,将对数函数ln(1+x)展开成关于x的幂级数,有ln(1+x)=x-x^2/2+x^3/3-x^4/4+…+(-1)^(n-1)*x^n/n+…-1<x≤1应用换底公式,f(x)=lgx=l

函数的幂级数展开式计算疑问

第二个等号后者的那个级数是交错级数您直接把交错级数和前面那个普通的级数加在一起您让交错级数里的正的项怎么办?两个相同的项做差结果是自己的二倍?再问:那是怎么算出来的呀?再答:把n取几个数,之后找规律=

求f(x)=arcsinx的幂级数展开式

给你arcsinx的展开方法,详见下面图片.[1+(x-1)]^(3/2)=x^(3/2)是不能展开成x的幂级数的,要展开成x的幂级数的函数必须在x=0处无穷次可导,这个函数在x=0处二阶及二阶以上的

sinx的幂级数展开式问题?

你的公式抄错了.应该是sin(x)=∑{1≤n}(-1)^(n-1)·x^(2n-1)/(2n-1)!,这样不会有n=0的问题.或者是sin(x)=∑{0≤n}(-1)^n·x^(2n+1)/(2n+

数学ln(1+x)展开式

ln(1+x)=1+1/x-1/x^2+1/x^3.+(-1)^(n-1)/x^n+Peano余项

求函数xe^(-2x)的幂级数展开式.

因为e^x=1+x+x^2/2!+x^3/3!+……所以xe^(-2x)=x-2x^2+4x^3/2!-8x^4/3!+……再问:e^x=1+x+x^2/2!+x^3/3!+……这个形式具体是什么?(

求函数的幂级数展开式

先求导数,导数之后就能用等比级数展开,在用逐项积分求出原函数的级数.arctan[(4+x^2)/(4-x^2)]'=1/{1+[(4+x^2)/(4-x^2)]^2}*[(4+x^2)/(4-x^2

ln(1/(5-4x+x^2) )用已知展开式成x-2的幂级数

见参考资料,要用到已知的公式

对数函数ln(x+1)的幂级数展开式结果有几种?

两者是一致的.详解如图:只要一个函数能展开成幂级数,那这个幂级数必然是这个函数的泰勒级数.

请求出(sinx)^3的幂级数展开式

sin3x=3sinx-4(sinx)^3接下来会不?(sinx)^3=(3sinx-sin3x)/4=……下面就是sinx的展开式和sin3x的展开式合并,很简单不码字了.