ln(x 1)幂级数展开式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:48:46
因为ln(1+x)=x-x^2/2+x^3/3-...+(-1)^(n+1)x^n/n+...所以f(x)=ln(1-x)=ln(1+(-x))=(-x)-(-x)^2/2+(-x)^3/3+...+
用泰勒级数令x0=0则f(x)=sinx=f(0)+f'(0)/1!*(x-0)+f''(0)/2!*(x-0)^2+……+f(n)(0)/n!*(x-0)^n+……f'(x)=cosx,f''(x)
(ln(x+√(1+x^2)))'=1/(√(1+x^2))=(1+x^2)^(-1/2)(1+x^2)^(-1/2)=1-(1/2)x^2+(-1/2)(-1/2-1)/2!(x^4)+(-1/2)
我们知道,将对数函数ln(1+x)展开成关于x的幂级数,有ln(1+x)=x-x^2/2+x^3/3-x^4/4+…+(-1)^(n-1)*x^n/n+…-1<x≤1应用换底公式,f(x)=lgx=l
第二个等号后者的那个级数是交错级数您直接把交错级数和前面那个普通的级数加在一起您让交错级数里的正的项怎么办?两个相同的项做差结果是自己的二倍?再问:那是怎么算出来的呀?再答:把n取几个数,之后找规律=
给你arcsinx的展开方法,详见下面图片.[1+(x-1)]^(3/2)=x^(3/2)是不能展开成x的幂级数的,要展开成x的幂级数的函数必须在x=0处无穷次可导,这个函数在x=0处二阶及二阶以上的
你的公式抄错了.应该是sin(x)=∑{1≤n}(-1)^(n-1)·x^(2n-1)/(2n-1)!,这样不会有n=0的问题.或者是sin(x)=∑{0≤n}(-1)^n·x^(2n+1)/(2n+
ln(1+x)=1+1/x-1/x^2+1/x^3.+(-1)^(n-1)/x^n+Peano余项
因为e^x=1+x+x^2/2!+x^3/3!+……所以xe^(-2x)=x-2x^2+4x^3/2!-8x^4/3!+……再问:e^x=1+x+x^2/2!+x^3/3!+……这个形式具体是什么?(
先求导数,导数之后就能用等比级数展开,在用逐项积分求出原函数的级数.arctan[(4+x^2)/(4-x^2)]'=1/{1+[(4+x^2)/(4-x^2)]^2}*[(4+x^2)/(4-x^2
见参考资料,要用到已知的公式
两者是一致的.详解如图:只要一个函数能展开成幂级数,那这个幂级数必然是这个函数的泰勒级数.
sin3x=3sinx-4(sinx)^3接下来会不?(sinx)^3=(3sinx-sin3x)/4=……下面就是sinx的展开式和sin3x的展开式合并,很简单不码字了.