ln(x^2 e^(2x))-2x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:19:29
(x->0) lim (e^x-e^sinx)/[x²*ln(1+x)]=(x->0) lim [(1+x+x²/2+x
ln[x]>[1/(e^x)-(2/ex)]记f(x)=ln[x]-e^(-x)+(2/ex),等价证明:当x>0时,f(x)>0.由一阶导数f’(x)=1/x+1/e^x-2/ex^2=0得:1/x
x→0时,分子→0,分母→1所以limln(1+2x)/e^x=0
罗比达法则lim[ln(2+3*e^2x)/ln(3+2*e^3x)]=lim[6*e^2x/(2+3*e^2x)/[6*e^2x/(3+2*e^3x)]=lim(3+2*e^3x)/(2+3*e^2
打字不便,lim下的x→+∞省略,lim[xln(x+2e^x)/ln(x+e^x)]=lim{x[x+ln(2+x/e^x)/[x+ln(1+x/e^x)]}=lim[x(x+ln2)/x]=+∞再
所谓等阶无穷小代换, 是以罗毕达法则为保证的, 很多教师在学生还没有学罗毕达法则时,用罗毕达法则试出一大串所谓的“等阶无穷小”,然后要学生死记硬背,把一门生气勃勃的微积分教成了靠死
解题思路:利用分析分子、分母的变化趋势来判断此极限是不存在的。解题过程:
lim∞>ln(1+e^x)/根号(1+x^2)罗比达法则lim∞>ln(1+e^x)/根号(1+x^2)=lim∞>[e^x/(1+e^x)])/[x/√(1+x^2)]=lim∞>[√(1+x^2
原式=lim{x->0}[1-x^2/2+x^4/24+o(x^4)-(1-x^2/2+x^4/8+o(x^4))]/[x^2(x-x+x^2/2+o(x^2)]=lim{x->0}[-x^4/12+
(e^e^x)'=(e^e^x)*(e^x)'=(e^e^x)*(e^x)(ln3(x+1)^2)'=1/3(x+1)^2*(3(x+1)^2)'=(1/3(x+1)^2)*(6(x+1))=2/(x
我综合了别人的一些方法,现在解法如下:此题先用泰勒公式在0点展开,到三阶导数:ln(1+x)=x-(1/2)x^2+(1/3)x^3+o(x^3)ln(1-x)=-x-(1/2)x^2-(1/3)x^
利用等价无穷小和L'Hospital'sRule即可lim(x->0)(e^x-e^sinx)/[(tanx)^2*ln(1+2x)]=lim(x->0)e^x(e^(x-sinx)-1)/[(tan
都错了.应该是减去ln3ln[(e^x+e^2x+e^3x)/3]'=[ln(e^x+e^2x+e^3x)-ln3]'=(e^x+2e^2x+3e^3x)/(e^x+e^2x+e^3x)再问:ln((
如果是求导数的话,y'=(2x+e^x)/(x^2+e^x)
y′=(3x-2)′/(3x-2)+e^(2x)·(2x)′=3/(3x-2)+2e^(2x).
lim(x趋于0)(e^2x-e^-x)/ln(1+x)=lim(x趋于0)(e^3x-1)/xe^x=lim(x趋于0)3e^3x/(e^x+xe^x)=lim(x趋于0)3e^2x/(1+x)=3
再问:可以写一下详细步骤吗谢谢再答:等价无穷小或者罗必塔法则学过没?再问:没有再答: 再问:嗯学过前面那个再问:谢谢你再答:
等价无穷小量或罗必达法则都太麻烦,把对数项用泰勒展开吧
1.e^(e^x+x)2.2/(x+1)3.-2/(x^2-1)都是复合函数求导再问:可以给我一下过程么。。