ln(x^2 y^2)=x y-1的微分怎么求

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:31:13
ln(x^2 y^2)=x y-1的微分怎么求
y=ln(x+√x^2+1)是奇函数

分子分母同乘以√x^2+1-x再问:哪里来的分子分母?我问的是第一步是怎么来的?再答:把x+√x^2+1看成(x+√x^2+1)/1,分母看成1

1)y=ln(x^2+y^2) 求y在(1,0)点上的导数 2)ln(4y)=3xy 求y的导数和二次导数

1)隐函数求导y'=(2x)/(x^2-2y+y^2),y在(1,0)上的导数是22)两边关于x求导得y'=(3y^2)/(3xy-1)再求导并把y‘代入得y''=(27(-y^3+2xy^4))/(

证明y=x-ln(1+x^2)单调增加

y'=1-2x/(1+x²)=(1+x²-2x)/(1+x²)=(x-1)²/(1+x²)显然y'>0所以y单调增加

y=-ln(-x+(x^2-a^2)^(1/2))

分子有理化,分子分母同乘以-x-√(x²-a²)结果是2lna-ln(-x-√(x²-a²))

解下面两个常微分方程:1.dy/dx=(y/x)[1+ln(y/x)] 2.xy′-y=(x+y)ln[(x+y)/y]

(1)令y/x=t,则y=tx,dy=xdt+tdx原方程化为:xdt/dx+t=t+tlntxdt/dx=tlntdt/(tlnt)=dx/x两边积分:ln|lnt|=ln|x|+Clnt=Cx(C

y=ln(x+√1+X^2)的导数

y'=[ln(x+√(1+x²))]'=1/(x+√(1+x²))*[x+√(1+x²)]'=1/(x+√(1+x²))*[1+2x/2√(1+x²)

y=ln(1+x^2),求y

y'=[1/(1+x^2)]*(1+x^2)'=[1/(1+x^2)]*2x=2x/(1+x^2)

y=ln(1-x^2)

chainruley=f(g(x))y'=g'(x)f'(g(x))

z=ln(xy+x/y),则δ^2z/δxδy=什么

δz/δx=1/(xy+x/y)*(y+1/y)=(y²+1)/(xy²+x)=1/xδ^2z/δxδy=δ(δz/δx)/δy=0

求方程xy''=y'ln(y'/x)的通解

设Y=y'降阶:Y'=(Y/x)ln(Y/x)这就是一个一阶齐次方程.设Y/x=u,所以Y=ux,Y'=u+x(du/dx),代回原方程,解得:lnu=C1x+1Y=xe^(C1x+1)所以y=[(C

几道微积分题求解下列微分方程1.xy'=y ln(y/x)2.xy‘-y=x tan(y/x)3.xy’+y=x^2+3

1.xy'=yln(y/x)y=xu,y'=xu'+uxu'+u=ulnudu/(ulnu-u)=dx/xln|x|+C0=ln|(lnu-1)|C1|x|=|lnu-1|通解C1|x|=|ln(|y

高数:x→0,y→2lim[ln(x+e^xy)/x]=?

运用函数连续性,化成一元函数求极限x→0,y→2lim[ln(x+e^xy)/x]=x→0lim[ln(x+e^(2x)]/x【0/0型】=x→0lim[ln(1+(x+e^(2x)-1)]/x=x→

y=ln^2(1-x)求导

Y=[LN(1-X)]^2?Y'=2LN|1-X|/(1-X)(-1)=-2LN|1-X|/(1-X)

y=ln(1-x^2) 求y''

y=ln(1-x^2)y'=(1-x^2)'/(1-x^2)=-2x/(1-x^2)

y=ln(1+x^2)求导

2x/(1+x^2)

y=ln(2x^-1)求导

y'=ln(2x^-1)'=(x/2)*2*(-1)/x^2=-1/x

e^y+ln(xy)-e^(-x)=0,求y'

两边求导得y'·e^y+(y+xy')/(xy)+e^(-x)=0

y=ln(x+√x^2+1),求y

x≤0时√x^2=-x所以y=0x>0时√x^2=x所以y=ln(2x+1)