lnx (1 x^2)的原函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:10:10
∫f(x)=x²lnxf(x)=lnx*2x+x²*1/x=2xlnx+x∫xf(x)dx=∫x*(2xlnx+x)dx=2∫lnxd(x³/3)+∫x²dx=
xlnx-x+c分部积分法∫lnxdx=xlnx-∫xdlnx=xlnx-∫dx=xlnx-x+c
f(x)的一个原函数为(lnx)^2f(x)=[(lnx)^2]'=2lnx/x∫xf'(x)dx=∫xdf(x)=xf(x)-∫f(x)dx=2lnx-(lnx)^2+C
有一些是特殊的,必须用这样的分部积分法来求解.再问:能把这种方法简单地说一下吗,我给分再答:哎呀我去,不好意思,我看错了,这不是分部积分,我2了。。。这个积分其实很有特点的,这就是一个普通的换元法,也
f(x)=(lnx)'=1/x∫xf'(x)dx=∫xdf(x)=xf(x)-∫f(x)dx=1-lnx+C1=-lnx+C
∫上限e,下限1x^2*f'(x)dx=∫上限e,下限1x^2df(x)=x^2*f(x)-∫上限e,下限1f(x)dx^2=x^2*f(x)-2∫上限e,下限1xf(x)dx=x^2*f(x)-2∫
答:∫(lnx)^2dx=x(lnx)^2-∫x*d((lnx)^2)=x(lnx)^2-∫x*2lnx/xdx=x(lnx)^2-2∫lnxdx=x(lnx)^2-2x*lnx+2∫xd(lnx)=
y=xlnx-x+C
(lnx)'=1/x所以∫1/xdx=lnx所以∫lnx/xdx=∫lnxdlnx=(1/2)*(lnx)²+C
即f(x)=(lnx)'=1/x所以原式∫f(x)df(x)=[f(x)]²/2+C=1/(2x²)+C
∫xf(x)dx=∫xd(xlnx)=x^2lnx-∫xlnxdx=x^2lnx-1/2∫lnxd(x^2)=x^2lnx-1/2x^2lnx+1/2∫x^2d(lnx)=1/2x^2lnx+1/2∫
f(x)=-e^(-x)x^2f(lnx)dx==x^2*(-1/x)dx=-xdx=-1/2*x^2+c设t=lnx,x=e^tx^2f(lnx)dx=(e^t)^2*f(t)d(e^t)=e^2t
∫(f'(lnx))/(3x)dx=(1/3)∫df(lnx)=(1/3)f(lnx)+C(f'(lnx))/3x的原函数=(1/3)f(lnx)+C
f(x)=【(1-sinx)lnx】'=(1-sinx)/x-cosxlnx∫xf'(x)dx=∫xdf(x)=xf(x)-∫f(x)dx=x((1-sinx)/x-cosxlnx)-(1-sinx)
∫f'(2x)dx=1/2∫f'(2x)d2x=1/2f(2x)+c因为f(x)的一个原函数为(lnx)^2,所以f(x)=[(lnx)^2]'=(2lnx)/x即f(2x)=(ln2x)/x所以∫f
因为1/lnx的原函数不是初等函数,所以不能用常规的有限解析式来求它的原函数……首先换元.令x=e^t所以1/lnx=1/t所以∫1/lnxdx=∫1/t*e^tdt到这后,我们知道如果用泰勒展开式的
原函数=∫lnxdx=xlnx-∫x·1/xdx=xlnx-∫dx=xlnx-x+C
∫sin(lnx)dx=xsin(lnx)-∫cos(lnx)dx=xsin(lnx)-xcos(lnx)-∫sin(lnx)dx2∫sin(lnx)dx=xsin(lnx)-xcos(lnx)∫si
ƒ(x)的原函数为(lnx)²==>∫ƒ(x)dx=(lnx)²==>ƒ(x)=2(lnx)(1/x)=(2/x)(lnx)∫xƒ'(x)d
(lnx))/(x+lnx)开始我试着用凑微分的方式做,无果.然后我观察了下,由于是(x+lnx)^2做分母,所以认为是一个以(x+lnx)为分母的分式,设分子为(Ax+Blnx).求导,待定系数求出