线性代数 设A=1 0 1 0 2 2 1 0 1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 12:26:42
线性代数 设A=1 0 1 0 2 2 1 0 1
线性代数 矩阵的运算设A是三阶矩阵,且|A|=-3,则|-3A|=

|-3A|=(-3)^3|A|=81再问:怎么不是等于9的再答:那就不知道啦,n阶矩阵前面有系数的行列式就是系数的n次方

线性代数:设n阶矩阵A的伴随矩阵为A*,证明:若|A|=0,则|A*|=0

有个结论:  |A*| = |A|^n直接可得你的结论 呵呵 suxiaoyu199105 说的不对, 这个结论与A是否

线性代数题.必给好评 设矩阵A= 1. X. -1. 2 2.

不会打啊再问:能写在纸上拍下来么?再答:明天吧,现在睡觉的呢再问:恩恩。。再问:亲???再答:答案是什么?你知道吗?我做了,但感觉不太对再问:不用了。。作业已上交。。。再答:额,抱歉啊再答:加下QQ吧

线性代数:设A,B是满足AB=0的任意两个非零矩阵,则必有?

你这样想AB=0如果用矩阵方程的形式来写是什么样的呢应该是A的每一行乘以B的每一列等于0那么B的每一列就是AX=0的解而齐次方程的解系应该都是线性无关的所以B的列向量必然线性无关同理A的行向量也是线性

线性代数 证明设矩阵A可逆,证明(A^* ) ^(-1)=|A^(-1) | A

因为A*A=|A|E,所以A*(A/|A|)=E,所以(A*)-1=A/|A|=|A^(-1)|A

线性代数 设n阶方阵A满足A^2=E,|A+E |≠0,证明A=E

A^2=E==>A^2-E=0==>(A+E)(A-E)=O|A+E|≠0所以A+E可逆那么方程(A+E)x=0只有0解也就是说A-E的每一列都是0,所以A-E=O

线性代数:设A为n级方阵,且|A|=2求|-3A|

|kA|=k^n|A|所以|-3A|=(-3)^n|A|=2*(-3)^n

【线性代数】设A=[111,111,111],求矩阵A的特征值和特征向量

P=(P1,P2,P3)^t,P^(-1)=-1.1.01..-1.10.1.-1Λ^5=diag(32.-32.1)P^(-1)AP=Λ=diag(2.-2.1)A=PΛP^(-1)A^5=PΛ^5

线性代数 设A为正交阵,且detA=-1.证明-1是A的特征值

A正交,则A的特征值的模是1又detA=-1=所有特征值的乘积,共轭复特征值成对出现所以必有特征值是-1再问:能写下证明过程吗?^ω^再答:再问:为什么A的转置等于A?再答:

线性代数问题:设A是n阶矩阵,满足AA'=|E|,|A|

AA'=E,是吧等式两边取行列式得|A|^2=1因为|A|

【线性代数】设A为实矩阵,且(A'A)^100=0,求证A=0.

A'A是对称阵,一定相似于对角阵,(A'A)^100相似于一个对角阵的100次方,这个矩阵若为0,只能对角线上全是0,即A'A相似于零矩阵,也是零矩阵.

线性代数:设A是可逆矩阵,且A+AB=I,则A逆等于?

A*(E(单位矩阵)+B)=EA*A逆=E所以A逆=E+B这样的题不用写具体数的,只要化成A*A逆的形式就行~

线性代数题,设A=E+αβ^T,其中α、β均为列向量.

需要明白秩为1的矩阵的特征值是啥!显然题目中的αβ^T是一个秩为1的矩阵所以其特征为3,0,.0(n-1个0)那么A的特征值为4,1,.1(n-1个1)那么A+2E的特征值为6,3,.3(n-1个3)

线性代数 设A,B为n阶方阵,B不等于0,且AB=0,

选B因为若|A|不等于0,则A可写成一系列初等矩阵的乘积,AB相当于对B作一系列初等变换,初等变换不改变矩阵的秩,所以AB同B有相同的秩,但是,由于AB=0,所以其秩为0,而B不等于0,所以其秩至少为

线性代数,设A^2+2A+2E=0,求A-E的逆

由A²+2A+2E=0得A²+2A+2E-5E=-5EA²+2A-3E=-5E(A-E)(A+3E)=-5E即(A-E)[-(A+3E)/5]=E∴A-E的逆矩阵为-(A

线性代数:设A为m x n矩阵且秩(A)=r的充要条件是

D-----根据定义,矩阵的秩是最高阶非零子式的阶.A的秩是r,所以高于r阶的子式全为零,且r阶子式一定有非零的.

【线性代数】设n阶矩阵A的行列式|A|=d≠0,求|A*|

由于A×A*=|A|E(E为A的同阶单位矩阵,这里是n阶)所以|A|×|A*|=|A×A*|=||A|E|=|A|^n=d^n;|A*|=|A|^(n-1)=d^(n-1)再问:|A|^n怎么得到的?