线性代数(AB)^m=A^m*B^m吗?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 16:28:29
这个公式是成立的,左边(AB)*乘以(AB)等于|AB|E,右边B*A*乘以AB等于|A||B|E=|AB|E,左边等于右边,这里用到一个性质,A*乘以A=|A|E此外,矩阵又上肩上的符号,T,-1,
因为C=AB是m*m阶矩阵,又因为r(A)≤n,同理r(B)≤n,由公式r(AB)≤min[r(A),r(B)]得r(AB)≤n,而m﹥n,所以|AB|=0,所以C=AB不可逆.“不可逆”等价于“方阵
前提是A是实矩阵要证明rank(A^TA)=rank(A),只需要验证A^TAx=0个Ax=0同解即可(注意A^TAx=0=>(Ax)^TAx=0)
因为r(A)=m,所以AX=0的基础解系包含n-m个线性无关向量因为AB=0,所以B的列向量都是AX=0的解r(B)=n-m,B是nx(n-m)所以,B的n-m个列向量线性无关综上,B的列向量组为线性
转置得B^TA^T=0,即B^Tai=0,其中ai是A^T的第i列,因为B^T的秩是n,故B^Tx=0只有零解,因此ai=0,i=1,2,...,m.于是A=0
考虑行列式|EnB||AEm|用列变换,第二列减去第一列乘以B,得上式=|Em-AB|,同样的,用行变换,第一行减第二行乘以B,上式又等于|En-BA|于是Em-AB的行列式与En-BA的行列式相等
BA是m*m阶矩阵,所以R(BA)
证明(1)AB=0则B的列向量是方程AX=0的解而又有r(A)=n则有AX=0有n个未知数,有n个约束条件则AX=0只有零解则B=0(2)AB=A则有A(B-E)=0同1可知,B-E为零矩阵则B为单位
设B=(a1,a2,a3,……),因为AB=O,所以Aa1=0,Aa2=0,……因为A列满秩,所以方程Aan=0仅有零解,即an=O,所以B=O用类似的方法可以证明第二个
这个就可以当公式来用,如果非要证明的话,如下:r(At*A)≤min(r(At),r(A)),而r(A)=r(At),所以r(At*A)=r(A)
依题意AB为m*m矩阵rank(A)≤n
m=ab/(a^2-ab)m=ab/[a(a-b)]m=b/(a-b)m^2/(am-b)-m/a=b^2/[(a-b)^2(ab/(a-b)-b)]-b/a(a-b)=b^2/(b^2(a-b))-
AB的维数:m*m,是个方阵R(AB)
当m>n时必有AB的行列式|AB|=0,这是Cauchy-Binet定理的一个内容.你可以参考百科.
因为AB是m*m的矩阵,又因为AB=E,所以E是m阶单位阵
把C看做X,则A=ABX,有解的充分必要条件是r(AB)=r(A).当r(AB)=r(A)
D-----根据定义,矩阵的秩是最高阶非零子式的阶.A的秩是r,所以高于r阶的子式全为零,且r阶子式一定有非零的.
1.证明:(1)因为AB=0,所以B的列向量都是AX=0的解[看到AB=0就要联想到这个结论]而由已知r(A)=n,所以AX=0只有零解所以B的列向量都是零向量,故B-0.(2)由AB=A,所以A(B