线性代数设A为n阶仿真,A=1 2(B E),求证:A及A 2E都可逆
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 02:07:22
由方程可得(A-I)(A+2I)=2I故A-I的逆为(A+2I)/2即A/2+I用的原理为A乘以A的逆等于单位矩阵
有个结论: |A*| = |A|^n直接可得你的结论 呵呵 suxiaoyu199105 说的不对, 这个结论与A是否
||A|A^T|=|A|^n|A^T|--性质:|kA|=k^n|A|=|A|^n|A|--性质:|A^T|=|A|=|A|^(n+1)=2^(n+1)
R(A)=n简单的看,有个公式R(AB)=R(A方)=n所以R(A)=n
|kA|=k^n|A|所以|-3A|=(-3)^n|A|=2*(-3)^n
如图,应该很容易理解,就是图不太清楚
因为AA*=|A|I=2I所以|AA*+2I|=|4I|=4^n|I|=4^n.再问:这个I是什么东西?再答:是单位矩阵
证明:AB与n阶单位矩阵En构造分块矩阵|ABO||OEn|A分乘下面两块矩阵加到上面两块矩阵,有|ABA||0En|右边两块矩阵分乘-B加到左边两块矩阵,有|0A||-BEn|所以,r(AB)+n=
R(A)
因为AAT=E,所以A为正交矩阵,且|A|再问:直接把A提出来,|AB|=|A||B|
R(A)=n-1,首先可以确定,A的基础解系所含的解向量个数是n-(n-1)=1个那么就很简单了,找一个向量,代入AX=0可以使之成立就行了.利用题目的暗示,这个向量可能是a我们试一试代入AX=0(E
后面的项(如k2A^nη=0)都是0
Ax是一列向量,(Ax)^T(Ax)是Ax与Ax的内积,即Ax的长度的平方也等于Ax各分量平方之和.
(C)E-B[(E+AB)^-1]A(E+BA)(E-B[(E+AB)^-1]A)=E+BA-(E+BA)B[(E+AB)^-1]A=E+BA-B(E+AB)[(E+AB)^-1]A=E+BA-BA=
选B因为若|A|不等于0,则A可写成一系列初等矩阵的乘积,AB相当于对B作一系列初等变换,初等变换不改变矩阵的秩,所以AB同B有相同的秩,但是,由于AB=0,所以其秩为0,而B不等于0,所以其秩至少为
5.B14.A,B,C
A^2=A,A的特征值是0和1.因为A是实对称矩阵,可对角化,所以A的秩就是对角化后非零主对角线元素的个数,所以A的特征值是r个1与n-r个0.所以2E-A的特征值是r个1与n-r个2,所以|2E-A
1)如果A可逆,(估计你忘写了这个条件)用A'表示A的逆,不好打,所以这么写,|A|表示A行列式值,因为A'=A*/|A|,也就是A'|A|=A*,又因为|A'|=1/|A|,A'|A|是A'每一行都
A^(-1)[A,E]=[A^(-1)A,A^(-1)E]=[E,A^(-1)]