线性代数齐次方程组基础解系怎么判定
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:55:59
这个齐次线性方程组有3个未知量,1个方程,也就是系数矩阵的秩是1,所以基础解系里面有3-1=2个向量,所以方程组的线性无关的解只有2个.
A=112-1212-11212r2=r2-2*r1r3=r3-r1A=112-10-1-2101-13r3=r3+r2A=112-10-1-2100-34r3=r3*(-1/3)A=112-10-1
晕死~那不是T次方,T是转置的意思,你求的X是列向量,而写出的[0,1,1]是行向量,所以加个T.你把这个式子展开就有X1=0,X2-X3=0,所以X3是个自由量,你给它赋个值(一般就是1,你要是就不
这个有理论定义的再问:不是证明出来的?再答:有证明,但不要求我们掌握
不是基础解系有很多.而是基础解系不唯一.这与向量组的极大无关组不唯一类似一个方程组求了三个?你是说基础解系所含的向量个数吧再问:那一个基础解系是不是可以对应多个线性方程组呢?再答:当然可以,这意味着那
把基础解系当做方程组的系数,再把新求出来的解系当做齐次方程的系数就可以了
x1x2...xn为基础解系的基础解则a1x1+a2x2+...anxn为其次方程的通解a1a2...an属于R
求出齐次线性方程组x1+x2-x4=02x2+x3+x4=0的基础解系:(1,-1,2,0)^T,(3,-1,0,2)^T则所求齐次线性方程组为:x1-x2+2x3=03x1-x2+2x4=0
视x1,x2,...,xn-1为自由未知量,得基础解系(1,0,0,...,0,-n)(0,1,0,...,0,1-n)(0,0,1,...,0,2-n).(0,0,0,...,1,-2)再问:(1,
这个题目刚答过系数矩阵A=12-22-112-13-224-711r2-r1,r3-2r112-22-10011-100-3-33r1+2r2,r3+3r21204-30011-100000a1=(-
不一定,有基础解系首先要有解吧,但并不是所有的齐次线性方程组都有解.基础解系含解的个数等于n-r,其中n是未知量的个数,r是系数矩阵的秩.
增广矩阵=124-31356-4245-2313824-195r2-3r1,r3-4r1,r4-3r1124-310-1-65-10-3-1815-30212-102r1+2r2,r3-3r2,r4+
你的答案是正确的,由标准答案给出的两个基础解析可以得到你的解标准答案中ξ2×2-ξ1的得数就是你的ξ2基础解析只要能表示解空间的所有解就行,你和标准答案都是正确的!再问:懂了,谢谢。另外关于矩阵秩的证
都取0有什么意义?齐次方程组一定有零解,我们要求的是非零解.用x3,x4表示x1,x2,也就是说x3,x4是自由未知量,要求取值是线性无关的,比如x3=1,x4=0和x3=0,x4=1.也可以取其它线
设x=(a,b,c)则2a+5b=0取a为任意一个非0数得到a=1,b=-0.4再带入方程a-2b-c=0得到c这样就可以得到一个解(a,b,c),基础解系就出来了再问:答案是不是不唯一?但答案a,b
系数矩阵秩为1,3阶矩阵,所以基础解系含有3-1=2个自由分量,在x1,x2,x3中任意选取两个作为自由分量(例如x1,x2),根据系数矩阵列出方程,即-4x1+x2+x3=0,即可得到x3与x1、x
将系数矩阵就是b第三行减去第一行乘以三之后有(00k-9)abc要满足的两个式子就出来了
先算他的系数矩阵:【1-211】【2-1-1-1】化到最简得:【1-100】【01-1-1】所以他的秩=2所以他有4-2=2个自由变量再由【1-100】【01-1-1】得x1-x2=0和x2-x3-x
首先,阿尔法1+阿尔法2、阿尔法1-阿尔法2,阿尔法3是其解.因为代入等式成立.其次,阿尔法1+阿尔法2、阿尔法1-阿尔法2,阿尔法3线性无关.设k1(阿尔法1+阿尔法2)+k2(阿尔法1-阿尔法2)
看线代书嘛,先求特征值,在求特征值对应的特征向量,所有特征向量的线线组合就是基础解系.