线性方程组的通解和基础解系,矩阵为1 2 2 1和2 1 -2 -2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:45:41
线性方程组的通解和基础解系,矩阵为1 2 2 1和2 1 -2 -2
求下列非齐次线性方程组的通解及相应的齐次线性方程组的一个基础解系

增广矩阵=154-1333-1252223-21r2-3r1,r3-2r1154-1330-16-1044-70-8-524-5r2-2r3154-133000-430-8-524-5r3+6r2,r

1、求下非齐次线性方程组所对应的齐次线性方程组的基础解系和此方程组的通解 2、已知随机变量X的分布律如

1.11112231111022511112231110-11131111201-1-1-30-11131111201-1-1-300000结果只剩两个有效方程式,秩降到2了设x3,x4p,q1111

线代求助:求线性方程组的通解,并指出其对应的齐次线性方程组的一个基础解系

希望对你有所帮助,我刚考完线性代数!也希望得到你的认可!

求线性方程组的基础解系和通解

系数矩阵A=21-1142-2121-1-1r2-2r1,r3-r121-11000-1000-2r2+r2,r3-2r2,r2*(-1)21-1000010000选x1,x3作自由未知量,得基础解系

求齐次线性方程组,的基础解系以及通解.

解:系数矩阵=11-1-12-5327-731r2-2r1,r3-7r111-1-10-7540-14108r3-2r211-1-10-7540000r2*(-1/7)11-1-101-5/7-4/7

求齐次线性方程组的一个基础解系,并求方程组的通解,

系数矩阵=31-6-4222-3-531-5-68-6r1-3r3,r2-2r301612-28200129-21151-5-68-6r2*(1/12),r1-16r2,r3+5r200000013/

求下列齐次线性方程组的一个基础解系和通解:

系数矩阵A=[1114][2135][1-13-2][3156]行初等变换为[1114][0-11-3][0-22-6][0-22-6]行初等变换为[1114][01-13][0000][0000]行

求齐次线性方程组的一个基础解系,并求方程组的通解

系数矩阵A=[2-315][-312-4][-1-231]初等行变换为[-1-231][2-315][-312-4]初等行变换为[-1-231][0-777][07-7-7]初等行变换为[10-11]

求齐次线性方程组的一个基础解系和通解.(如图)

系数矩阵A经过初等变换后,化简为10-101101-790000=A'0000所以r(A)=2那么基础解系含有两个向量化简后的矩阵得到方程为x1-10x3+11x4=0x2-7x3+9x4=0令(x3

求下列齐次线性方程组的一个基础解系和通解

系数矩阵A=[1111][2135][1-13-2][3156]行初等变换为[1111][0-113][0-22-3][0-223]行初等变换为[1111][01-1-3][000-9][000-3]

求非齐次线性方程组的通解和对应的基础解系(1)(2)要具体过程哦,

(1)解:增广矩阵=1-11-111-1-1101-1-22-1/2r2-r1,r3-r11-11-1100-22-100-33-3/2r2*(-1/2),r1-r2,r3+3r21-1001/200

求齐次线性方程组的基础解系和通解

系数矩阵:11-1-12-53-27-732r2-2r1,r3-7r1得:11-1-10-7500-14109r3-2r2:11-1-10-7500009矩阵的秩为3,n=4,基础解劝系含一个解劝向量

用非齐次线性方程组的导出组的基础解系表示非齐次线性的通解?

这是线性方程组的解的结构的内容设AX=b是非齐次线性方程组,即b是非零列向量.其导出组是指齐次线性方程组AX=0.若ξ是AX=b的解(称为特解),η1,η2,...,ηs是AX=0的基础解系(s=n-

求线性方程组的基础解系 通解的方法

1.将增广矩阵经初等行变换化成行阶梯形(此时可判断解的存在性)2.有解的情况下,继续化成行简化梯矩阵非零行的首非零元所处的列对应的未知量是约束变量,其余未知量是自由未知量例:非齐次线性方程组12045

线性方程组基础解系和通解唯不唯一,自由未知量取值有什么技巧?

线性方程组的系数矩阵为可逆矩阵时,线性方程组有唯一解,有多个自由未知量时,如x4,x5,x6,例如x1=x4/2+x5-x6/3,先选择x4,取x4=2,x5=0,x6=0,其次,x5=1,x4=0,

求线性方程组x1+x2+x3=1的通解和基础解系,

先算齐次解x1+x2+x3=0解为x=(1,-1,0),(1,1,-2)齐次通解为x1=s+tx2=-s+tx3=-2t特解x1=1x2=0x3=0非齐次通解为x1=1+s+tx2=-s+tx3=-2

求线性方程组的基础解系及通解

系数矩阵变成一列只有一个1的形式就行了再问:有没有具体步骤再答:给你个类似的链接http://zhidao.baidu.com/link?url=FXAMOQdr-OYdO6cv3yst2et12aA