lnx泰勒级数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:25:15
1.如果存在一个泰勒级数,那么这个泰勒级数在某一数的邻域内一定收敛于这个函数f(x)吗?答:不一定.事实是,如果由一个f(x),得到了它所对应的泰勒级数,而且,这个泰勒级数是收敛的,在这种情况下,并不
我刚才想错了,你把它看作1/(1+769x^2)的积分,然后把积分里的东西展开,在逐项积分就可以了易得收敛半径r=1/根号(769)
泰勒级数有限项,幂级数无数项查看原帖
楼上尽瞎说没有关系的,任和函数,只要在点的某一临域内具有直到(n+1)阶导数,则在该邻域内f(x)的n阶泰勒公式跟收不收敛能有什么关系?
你先参照公式展开最后把一带进去惊奇的发现你床罩了一个奇迹!
1、x^4/(1-x)=x^4(1+x+x²+...)=x^4+x^5+x^6+...=Σx^(n+4)n=0→∞2、lnx=ln(2+x-2)=ln[2(1+(x-2)/2)]=ln2+l
该函数在第一象限与第二象限分别都是直线,没有哪一个点具有无穷阶导数,故其泰勒展开是有限项.而泰勒展开的前提是区间内光滑,所以你要的那个展开只能从x=0处分成两段分别表述.即那个展开唯一地只能是:f(x
taylor从0项开始,洛朗可从负项开始,取决于fx是啥和曲线的奇点以及x的范围.
∑(n=0,+∞)(-1)^n(z-1)^(n+1)/3^(n+1)+∑(n=0,+∞)(-1)^n(z-1)^n/3^(n+1)=∑(n=0,+∞)(-1)^n(z-1)^(n+1)/3^(n+1)
几阶,带有佩亚诺余项还是拉格朗日余项?再问:原题就是这么写的…再答:再答:简单的说任何一个式子都可以化成关于(X-X0)的n次多项式,其中x0可以是任意数字,打个比方,最简单的x^2这个式子,可以化成
泰勒级数泰勒级数的定义:若函数f(x)在点的某一临域内具有直到(n+1)阶导数,则在该邻域内f(x)的n阶泰勒公式为:f(x)=f(x0)+f`(x0)(x-x0)+f``(x0)(x-x0)&sup
那是用了夹逼定理啊.因为那个|x-x0|^(n+1)/(n+1)!的极限是0且0再问:我是不明白|x-x0|^(n+1)/(n+1)!的极限为什么是0?再答:对于某一个顶点x处,|x-x0|是个常数,
他是开始设一个函数F(X)=ao+a1x+a2x^2+a3x^3+a4x^4……+anx^n……现在要求出系数a0a1a2a3a4……an……要球a0只要x=0的时候有F(0)=a0求a1只要对F(X
应该是求展开得若干项吧!不是所有的函数都可以清晰地写出泰勒级数的所有项.楼主看看泰勒级数的部分吧.不过有一些泰勒级数的展开是比较好用的.见参考.第一问有问题吧!x0=-1->f(x)=1/0?是不是l
f(x)=lnx=ln(2+(x-2))=ln{2[1+(x-2)/2]}=ln2+ln[1+(x-2)/2];然后把ln(1+x)的展开式中的x用(x-2)/2替换即可,这个书上可以找到的.ln(1
多简单啊,一阶导数没有常数项,=06阶导数常数项为x^6/2!所得,=6!/2!=360
这个只能说与sinx的展开式有关sinx=x-x^3/6+x^5/(5!)-x^7/(7!)+x^9/(9!)+.所以第四项是O(x^7).这样写成第一个o(x^6)相对要精确点.但是按照皮亚诺余项定
正弦函数的泰勒展开式是:sin(x)=x-(x^3)/3!+(x^5)/5!+...再问:能写完整吗???再答:
我给你发
对你提的问题全靠猜,符号表示极不清楚.估计是:Σ(0,+∞)(-1)^n(z-1)^(n+1)/3^(n+1)+Σ(0,+∞)(-1)^n(z-1)^n/3^(n+1)=Σ(1,+∞)(-1)^(n-