lnx的展开式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:12:50
y=x^lnxlny=(lnx)²y'/y=2lnx*1/xy'=2x^lnx*(lnx)/x
ee的发现始於微分,当h逐渐接近零时,计算之值,其结果无限接近一定值2.71828...,这个定值就是e,最早发现此值的人是瑞士著名数学家欧拉,他以自己姓名的字头小写e来命名此无理数.计算对数函数的导
分部积分法S表示积分号S(lnx)^2dx=x(lnx)^2-S2lnxdx=x(lnx)^2-2xlnx+2x+CC为常数
我们知道,将对数函数ln(1+x)展开成关于x的幂级数,有ln(1+x)=x-x^2/2+x^3/3-x^4/4+…+(-1)^(n-1)*x^n/n+…-1<x≤1应用换底公式,f(x)=lgx=l
1/X
你的公式抄错了.应该是sin(x)=∑{1≤n}(-1)^(n-1)·x^(2n-1)/(2n-1)!,这样不会有n=0的问题.或者是sin(x)=∑{0≤n}(-1)^n·x^(2n+1)/(2n+
Ihave
几阶,带有佩亚诺余项还是拉格朗日余项?再问:原题就是这么写的…再答:再答:简单的说任何一个式子都可以化成关于(X-X0)的n次多项式,其中x0可以是任意数字,打个比方,最简单的x^2这个式子,可以化成
解题思路:考查二项展开的通项公式,第一个式子的x乘以第二个式子的常数项+第一个式子的常数项乘以第二个式子的一次项得展开式的一次项解题过程:最终答案:C
LnX的导数是1/x,这这样求的:lnx)'=lim(t->0)[ln(x+t)-lnx]/t=lim(t->0)ln[(1+t/x)^(1/t)]令u=1/t所以原式=lim(u->∞)ln[(1+
可以看成是求a分之一乘Lnx的导数结果是a分之一乘X分之一
先求导数,导数之后就能用等比级数展开,在用逐项积分求出原函数的级数.arctan[(4+x^2)/(4-x^2)]'=1/{1+[(4+x^2)/(4-x^2)]^2}*[(4+x^2)/(4-x^2
∫(lnx-1)/ln²xdx=∫1/lnxdx-∫1/ln²xdx=x/lnx-∫xd(1/lnx)-∫1/ln²xdx=x/lnx-∫x*-1/ln²x*1
原式=∫dx/lnx-∫dx/ln²x=∫dx/lnx-∫xd(lnx)/ln²x(∵dx=xlnx)=∫dx/lnx-(-x/lnx+∫dx/lnx)+C(第二个积分应用分部积分
是公式的余项也就是误差公式是说比x-x0的n次方更高阶的无穷小量也就是当x-x0趋于0时Rn(x)/[(x-x0)^n]也趋于0
(lnx))/(x+lnx)开始我试着用凑微分的方式做,无果.然后我观察了下,由于是(x+lnx)^2做分母,所以认为是一个以(x+lnx)为分母的分式,设分子为(Ax+Blnx).求导,待定系数求出