lnx的泰勒展开式系数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 16:56:52
有.只要按照马克劳林公式的一般形式f(x)=连加(n从0到无穷)x^n*f^(n)(0)/n!展开(其中f^(n)(0)表示f的n阶导数在0点的值),只不过最后的每项的形式没什么规律(这也取决于f^(
(1+z+z^2/2!+...+z^n/n!+o(z^n))/(1-z)展开式应该就是这样吧,看你要保留到几项了.视你的具体情况而定.再问:答案是1+z+z2次方+z3次方…………再答:那这样不对啊(
答案错了,应该是√2.看自变量用的是z,你这题是复变里的吧?学了复变函数应该知道,1/(1+z²)在复平面上z=±i以外的区域解析.而解析函数在任意一点Taylor展开的收敛半径=以该点为圆
几阶,带有佩亚诺余项还是拉格朗日余项?再问:原题就是这么写的…再答:再答:简单的说任何一个式子都可以化成关于(X-X0)的n次多项式,其中x0可以是任意数字,打个比方,最简单的x^2这个式子,可以化成
解题思路:考查二项展开的通项公式,第一个式子的x乘以第二个式子的常数项+第一个式子的常数项乘以第二个式子的一次项得展开式的一次项解题过程:最终答案:C
这是04年的题目吧,因为你并不知道在x=0的时候T(x)的到数等于多少,criticalnumber是不能用估计来做的.这种题今年应该不会考吧
symsx>>taylor((1-2*x+x^3)^0.5-(1-3*x+x^2)^(1/3),x,'ExpansionPoint',0,'order',6)ans=(239*x^5)/72+(119
一样的吧.也许你看到的是皮亚诺余项,这个是拉格朗日余项.再问:但是平常见得带拉格朗日余项的泰勒公式都是以f(x)开头的,这里是f(x+h),需要怎么转换?再答:。。。。。那个是泰勒公式在x=0处的展开
1.泰勒展开只是对于一小段区域而言的,不是整体性质.2.为什么满足那个条件就能使这两个函数那么相似?(因为有一个余项所以不能叫相同)那个条件的意义是什么你知道吗?其本质是它们两个函数(记右边的逼近函数
(arctan(x))'=1/(1+x^2)这个导数可以用基本公式1/(1+x)来展开
我晕,高等代数上不是经常有这个吗?
是公式的余项也就是误差公式是说比x-x0的n次方更高阶的无穷小量也就是当x-x0趋于0时Rn(x)/[(x-x0)^n]也趋于0
根2收敛半径必须满足在这个域内解析.,1到3的距离是2,1到i的距离是根2,选择其中较短的距离可以保证在这个域内解析
可以的.再答:其实就没有x的六次方这一项,我觉得写成O(x五次方)才是最正确的再答:要是有x六次方,你这么写就错了~再问:再答:嗯,可以的。最后面后面写o(x五次方)吧~再问:再问:这道题跟我问的差不
tanx=x+x^3/3+2x^5/15+17x^7/315+62x^9/2835+...+[2^(2n)*(2^(2n)-1)*B(2n-1)*x^(2n-1)]/(2n)!+.(|x|
symsx;taylor(exp(-2*x),7)
首先可以说是,也可以说不是.你注意泰勒展开式的定义式子,都是导数乘以(x-a),如果你直接用x^2代替了x,那么左边都变成x^2-a了,那么此时,等式是成立的,但是他前面的系数也不是(1+x^2)^(