ln⁡(2n^2 1) n的极限

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 16:18:25
ln⁡(2n^2 1) n的极限
1:x趋于0时,求ln(1+3x)/sin4x的极限,2:N趋于无穷大时,求N[ln(5+N)-lnN]的根限.

斜率ln(1+3x)=3斜率sin4x=4ln(1+3x)/sin4x的极限3/4N[ln(5+N)-lnN]=nln(1+5/n)n=5tnln(1+5/n)=5ln[(1+1/t)^t]=5lne

ln(2n+3)/(2n+1)求极限

lim(n->∞)ln(2n+3)/(2n+1)=lim(n->∞)ln[1+2/(2n+1)]=ln1=0收敛的.

定积分求极限有关问题1/n[ln(1+1/n)+ln(1+2/n)+……+ln(1+(n-1) / n)]=∫(1,0)

首先你给的等式是不对的,等式左边应该有个极限符号,当n趋向于无穷大的时候,你的等式才成立.然后再看等式,你可以将等式反过来看,从定积分的几何意义出发,该定积分的几何意义是以y=ln(1+x)为曲边、y

极限lim(n->oo) n[ln(2+1/n)-ln2] 怎样算?貌似要用导数的?.

设x=1/n,则lim(n→∞)n[ln(2+1/n)-ln2]=lim(x→0)[ln(2+x)-ln2]/x=lim(x→0)1/(2+x).0/0型,L'Hospital法则,分子分母同时对x求

求lim(ln(1+x^n)/ln^m(1+x))的极限(x趋于0)

用等价无穷小代换lim(x→0)(ln(1+x^n)/ln^m(1+x))=lim(x→0)x^n/x^m=lim(x→0)x^(n-m)若n>m,则极限为0若n=m,则极限为1若n

n趋于无穷大时,{n[ln(n+2)-lnn]} 的极限

n[ln(n+2)-lnn]=nln(n+2)/n=nln(1+2/n)=2ln[(1+2/n)^(n/2)]当n趋于无穷时(1+2/n)^(n/2)趋近于e所以n[ln(n+2)-lnn]=2ln[

ln(1+1/n)^n的极限(n->正无穷)为什么等于lne

由重要极限二知道:n->∞时,lim(1+1/n)^n=e(这个的证明过程较繁琐高数的教科书上应该都有证明过程)所以n->∞时,lim(ln(1+1/n)^n)=lne

当n趋近于无穷大时 n/ ln n的极限为什么是无穷大?

可以用洛必达法则再答:上下求导后是n,所以是无穷再答:另外,当n趋近于无穷的时候,几种初等函数增长速率应该记一下,对数函数最低,其次是幂函数,最快是指数函数,分子是幂函数,分母是对数函数,所以结果是无

级数ln n/n^2的收敛性

∵limn->∞时,lnn/n²~1/2n²∵1/n²收敛∴lnn/n²收敛

lim{n[ln(n+2)--ln2]}的极限怎么求?

你的题目可能有错,要考你对重要极限公式的灵活运用.应该是lim{n[ln(n+2)--lnn]}=lim{nln[(n+2)/n]}=limnln[1+1/(n/2)]=2lim{ln[1+1/(n/

判别级数收敛性比较审敛法:∑(∞ n=1) (ln n)/n^(4/3)那(ln n)/n^(1/6)的极限为什么是0?

收敛,用P判别法(也就是比较审敛法)可以有(lnn)/n^(4/3)*n^(7/6)=(lnn)/n^(1/6)极限是0所以原级数收敛其实lnn^εε→0+那(lnn)/n^(1/6)的极限为什么是0

ln(2n^2-n+1)-2ln n.当n趋于正无穷是的极限

ln(2n^2-n+1)-2lnn=ln((2n^2-n+1)/n^2)=ln(2-1/n+1/n^2)--->2答案:2

n趋于正无穷求极限n^2*ln[n*sin(1/n)]

关于n的数列极限问题,可以转化为函数极限:n^2*ln[n*sin(1/n)]=【ln{[sin(1/n)]/(1/n)}】/[(1/n)^2]当n→+∞时,1/n→0,所以用x代替式中的1/n得到:

求极限 lim(n→∞) (ln(1+1/n)/(n+1)+ln(1+2/n)/(n+2)+...+ln(1+n/n)/

lim(n→∞)(ln(1+1/n)/(n+1)+ln(1+2/n)/(n+2)+...+ln(1+n/n)/(n+n))=lim(n→∞)1/n*(ln(1+1/n)/(1+1/n)+ln(1+2/

求极限:lim{n[ln(n+1)-lnn]}的极限是

楼上解错了,洛必达法则只用于函数,而不是用于数列.点击放大、再点击再放大:

求极限n【ln(n-1)-lnn】

以下各式省略lim(n→∞):n×[ln(n-1)-ln(n)]=n×ln[(n-1)/n]=n×ln(1-1/n)=ln[(1-1/n)^n]=ln{[(1-1/n)^(-n)]^(-1)}=1/{

求当n趋近于无穷时,n[ln(n-1)-lnn]的极限

n→∞,limn[ln(n-1)-lnn]=limn*[ln(n-1/n)]=lim[ln(1-1/n)^n]因为函数f(x)=lnx连续,所以归结得:lim[ln(1-1/n)^n]=ln[lim(