M,E,P,N分别为AB,AC,BD,CD的中点,求证:PN与ME互相平行

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:42:12
M,E,P,N分别为AB,AC,BD,CD的中点,求证:PN与ME互相平行
如图所示.D,E分别在AB,AC上,BD=CE,BE,CD的中点分别是M,N,直线MN分别交AB,AC于P,Q.求证:A

证明:找到BC的中点H,连接MH,NH.如图:∵M,H为BE,BC的中点,∴MH∥EC,且MH=12EC.∵N,H为CD,BC的中点,∴NH∥BD,且NH=12BD.∵BD=CE,∴MH=NH.∴∠H

三角形ABC中,AB=AC=m,BC=n,点P在中位线MN上,BP,CP的延长线分别交AC、BC于E、F

过A作HK∥MC∥MN,分别延长BE,CF交于K,H,∵P是△ABC中位线,∴BP=PK,CP=PH,即△BPC≌△KPH(SAS)∴KH=BC.又由△BFC∽△AFH,△BEC∽△KEA,∴AF/F

平行四边形ABCD中M,N为AB三等分点,DM,DN分别交AC于P,Q两点,求AC PQ QC比值

证明;三角形AMP∽三角形DPC,得AP/PC=AM/DC=1/3,所以AP=1/3PC,AP=1/4AC三角形AQN∽三角形DQC,得AQ/QC=AN/DC=2/3,所以AQ=2/3QC,AQ=2/

在三角形ABC中,D、E分别是AB,AC上的点,且BD=CE,M,N分别是BE,CD的中点直线MN分别交AB,AC于P,

证明:取BC的中点为O,连接OM、ON则OM是△BCE的中位线,ON是△BCE的中位线∴OM=1/2CE,ON=1/2BD,OM∥AC,ON∥AB∵BD=CE∴OM=ON∴∠OMN=∠ONM∵∠ONM

在△ABC中,点E,F分别在边AB,AC上,BF与CE交于点P,点M,N分别是BF,CE的中点,直线MN分别交AB,AC

您好!证明:取BC中点D,连结MD,HD,过F作FH∥AB∵∠CBF=∠BCE=½∠A∴PB=PC,∠CPB=∠EPF=180°-∠A∴A,E,P,F四点共圆∴∠BEP=180°-∠CFP,

如图在△ABC中,D、E分别为AB、AC上的点,且BD=CE,M、N分别是BE、CD的中点.过MN的直线交AB于P,交A

找到BC的中点H,连接MH,NH.如图:∵M,H为BE,BC的中点,∴MH∥EC,且MH=EC.∵N,H为CD,BC的中点,∴NH∥BD,且NH=BD.∵BD=CE,∴MH=NH.∴∠HMN=∠HNM

已知M,N分别是三角形ABC两边AB,AC的中点,P是MN上任意一点,BP,CP的延长线与AC,AB的的交点分别为E,F

证明:过A作EF‖BC,与CH,BK的延长线交于E,F因为M,N分别是三角形ABC两边AB,AC的中点则由中位线定理MN‖BC‖EF,所以EP/PC=AN/NC=1,FP/PB=AM/MB=1所以EP

△ABC中,D,E分别是AB,AC上的点,且BD=CE.M,N分别是BE,CD上的中点,直线MN分别交AB,AC于P,Q

少条件呀!再问:不好意思打错了是求证三角形APQ是等腰三角形

在△ABC中,D,E分别是AB,AC上的点,且BD=CE,M,N分别是BE,CD的中点,直线MN分别交AB,AC于P,Q

证明:取BC的中点F,连接MF、NF因为M是BE的中点所以MF是△BCE的中位线所以MF//CE,MF=CE/2同理NF//BD,NF=BD/2因为BD=CE所以MF=NF所以∠NMF=∠MNF因为M

如图在△ABC中,D、E分别为AB、AC上的点,且BD=CE,M、N分别是BE、CD的中点.过MN的直线交AB于P,交A

AP=AQ.理由如下:如图,取BC的中点H,连接MH,NH.∵M,H为BE,BC的中点,∴MH∥EC,且MH=12EC.∵N,H为CD,BC的中点,∴NH∥BD,且NH=12BD.∵BD=CE,∴MH

如图,已知M、N、P、Q分别为线段AC、BD、CD、AB的中点

∵M、Q分别是AC,AB的中点∴MQ‖BC且MQ=1/2×BC同理可得NP‖BC且NP=1/2×BC∴MQ‖NP,MQ=NP∴MNPQ是平行四边形主要运用三角形中位线定理

如图,AB,AC是内接于⊙O的两条弦,M、N分别为AB,AC的中点,MN分别交AB,AC于E,F.判断三角形AEF的形状

△AEF是等腰三角形.证明:连接OM,ON,分别交AB与AC于点P,Q,∵M、N分别为AB,AC的中点,∴OM⊥AB,ON⊥BC,∴∠MPE=∠NQF=90°,∴∠PEM=90°-∠M,∠QFN=90

D,E分别在三角形ABC的AB,AC上,BD=CE,M.N分别为BE,CD中点,MN的反向延长线分别叫AB,AC与点P,

BC的中点为F,连接MF和NF,很容易证明MF=NF,则角FMN=角FNM,根据内错角相等,很容易证明角FMN=AQP,APQ=FNM,从而得证.

点P为三角形ABC内一点,使得角ABP=角ACP,过点P作PE垂直AB于E,PE垂直AC于F,点M,N分别为线段BC,E

证明:连接ME、MF、BF、CE.因为PE垂直于AB,PF垂直于AC所以,角BEP=角CFP=90度因为角ABP=角ACP所以角BPE=角CPF延长BP至Q,交AC于Q.则,角BPE=角CPQ所以,角

1、直角△ABC、D、E为AB、AC上的点,M、N、P、Q分别是各边中点,求证:MN=PQ

1.连接PN,NQ,QM,MP三角形DCE中有MQ平行且是CE一半三角形EBC中有PN平行且是CE一半得MQ平行且等于PN,得平行四边形PNQM.又三角形BED中,PM平行BD,而BD垂直CE即角A=

在四边形ABCD中,AD=AC,M,E,F分别为AB,BC,BD的点,MN⊥EF于N,求证:N为EF的中点

条件打错了吧?M、E、F分别为AB、BC、BD的中点么证明:连接ME、MFM为AB中点,E为BC中点,所以ME为△ABC中位线因此ME=AC/2M为AB中点,F为BD中点,所以MF为△ABD中位线因此

如图,AB,AC为圆O的两条弦N为AC弧的中点,M为AB弧上一点,MN分别交AB,AC于点D,E,且AD=AE,求证:M

连接OM、ON,因为OM=ON,所以∠M=∠N.因为N为弧AC中点,所以ON⊥AC,因为AD=AE,所以∠ADE=∠AED所以∠M+∠MOB=∠N+∠NEC=90°,所以OM⊥AB,即M为弧AB的中点

如图,AB,AC为圆O的两条弦,AB=AC,M,N分别为弦AB、AC的中点,过点M、N的直线交圆O于点E、F.

连接AO,交EF于点D,由题意得AM=AN,∠AMO=∠ANO,OA=OA,容易得到三角形AMO全等于三角形AON,所以∠MAO=∠NAO,OM=ON所以OA垂直于EF,所以ED=DF,容易证明三角形

正方形ABCD中,P为CD上一动点,E为CB延长线上一点,且BE=DP,连PE交AB,AC分别为Q,N,

【1】因为在正方形ABCD中所以AD=AB,∠D=∠ABE,∠BAD=90°又因为BE=DF所以⊿ABE≌⊿ADF所以AP=AE,∠EAB=∠PAD所以∠BAP+∠PAD=∠BAP+∠EAB=90°又