matlab 求随机变量函数的分布

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 06:20:07
matlab 求随机变量函数的分布
概率论,已知随机变量的联合密度函数求概率

这个是连续型随机变量求概率,积分就好,请看图片再答:

已知随机变量X1,X2均服从正态分布,利用matlab怎么画随机变量函数Y的概率密度图啊?

matlab只能通过仿真来模拟,而不是准确的概率密度函数.具体程序是下边这样的.x1=2+randn([100000,1]);x2=4+randn([100000,1]);Y=714+807*(x1)

怎样用matlab绘制未知分布的随机变量的累积分布函数

a=randn(10000,1);%以正态分布例子,使用时a用你的随机数数据代替[bx]=hist(a,100);%分区间统计,这里分100个区间,可根据你的数据适当调整num=numel(a);%n

已知随机变量X的分布函数 ,求期望

X在(0,4)均匀分布.期望为2.

随机变量密度函数的解题过程,求解释

①F(x,y)=∫∫.无限矩形的右上顶点在D2内,实际上积分区域是一块三角形区域:0≤T≤x:0≤S≤x.答案选择的是先积S.这时可以选择先积T.②F(x,y)=∫∫.无限矩形的右上顶点在D3内,实际

请问如何用matlab 求任意一组连续随机变量的概率密度函数?

你说的是已知样本值了,然后统计估计其概率密度么?可以这样,假设你已经有了一组数据是a,我这自己产生啦~a=randn([10000,1]);ksdensity(a);这样就可以得到它的概率密度函数了~

如何求随机变量的分布函数

我的数学知识有限,简单说说我的理解:1.分布函数是对样本空间的数学描述,为解析方法提供了可能.2.不同性质的样本空间对应不同的分布函数.3.目前常用分布函数种类可满足大多数需要楼主需要了解一些信息:1

求连续型随机变量的分布函数

根据正则性,求出A等于二分之一:对密度函数在x的区间上求定积分!分布函数等于密度函数在区间(负无穷,x]上的定积分,求出这个定积分,答案中自然有一个二分之一!(用手机回答的,很多表达式写不出,要不我一

已知随机变量ξ的概率密度函数求方差

可利用期望与方差的公式如图计算.经济数学团队帮你解答,请及时采纳.

编写Matlab程序求随机变量X~B(10,0.4),求分布律,分布函数及P(X=3).

p=arrayfun(@(x)binopdf(x,10,0.4),0:10)%分布律f=arrayfun(@(x)binocdf(x,10,0.4),0:10)%分布函数binopdf(3,10,0.

随机变量X~N(0,1),求下列随机变量Y=X^2的概率密度函数

思路是:先求解Y的分布函数,用定义求:即FY(y)=Py(Y=0,否则为零变形一下得到;FY(y)=PX(-y^0.5=

令随机变量X有密度函数f(x)=1/π(1+x²),求³√X的密度函数,12分题目,

令Y=³√X,设其密度函数为g(y).Y=³√X的反函数为,X=Y^3,于是由随机变量函数的概率密度公式得g(y)=f(y^3)|(y^3)'|=3y^2/π(1+y^6),再问:

设随机变量X服从指数分布,求随机变量Y=min(X,2)的分布函数

可以利用Y与X的关系如图求出分布函数.经济数学团队帮你解答,请及时采纳.再问:再问:能不能帮我在做一下50题再答:这个我不会。前面的问题已经解决,请采纳!

求一个MATLAB 矩阵扩展函数~解决再加50分!

imageex(limage,heightx2,widthx2);A=size(height,width);B=zeros(m+h*2,n+w*2);\x05\x05%创建个扩展大小的0矩阵B(h+1

跪求随机变量函数的数字特征的解答

这是大学数学的概率论题目,抱歉,由于计算实在难打,我只给出主要步骤:设正态分布X的密度函数g(x)(g(x)书上有给出,这也没法写),分布函数为G(x)由Y=1/X知,Y≠0Y的分布函数F(y)=P(

matlab求函数的参数!

函数形式可以给出来吗?如果是线性的话可以直接最小二乘估计参数.如果是非线性的,建议用fit函数,自己看一下帮助文档就知道怎么用了.再问:y=m/[1+(m/566-1)*e^(-ry)]m,r是参数。

设随机变量X~U(0,π),求:随机变量 Y=2X+1的密度函数...

X~U(0,π)(均匀分布),x的密度函数为1/π,x∈(0,π)时,其它均为0X~U(0,π),Y=2X+1∈(1,2π+1)的密度函数为1/(2π),x∈(1,2π+1)时,其它均为0【【不清楚,

请问概率论高手,关于求随机变量函数的密度函数

y>1不是Y>1.y>1的含义是积分上限>1再问:嗯,可是问题是为什么y>1时,1-exp(-2x)