自变量为分类变量的回归分析
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:29:49
这个有序多分类变量是自变量还是因变量啊?自变量的话看似然比检验,显著的话就不能当作数值型变量,而需要当作分类变量来做,转换成哑变量;因变量的话用multinomiallogistic来做.
使用二分类的logistic回归分析因变量移入相应对话框自变量中的分类变量移入相应的类别对话框,连续性自变量移入协变量对话框其他默认就可以了其实操作是很简单的,但是结果解释就比较难
如果因变量是分类变量,哪你采用多元回归分析就是错误的了应该采用logistic回归来进行的因变量的4分类是否属于有序的还是无序的如果有序,则使用有序多分类logistic回归若无序,则使用无序多分lo
模型为:VAR00008=-0.552+0.14X1+0.074X2+0.065X4+0.365X5+0.248X6+0.306X7X1,X2,X4,X5,X6,X7分别为各自变量.1.调整的R平方为
这些都是常规模板,但是你自己要提供数据才行的阿我替别人做这类的数据分析蛮多的
无需处理可以直接进行回归分析
用SPSS进行多元回归以后,系统会自动给出x1、x2和x3(从大到小)的R的平方和,相减就是解释率.
啥意思啊据我对问题的了解做以下回答比较标准化回归系数,值最大的表示影响最大,前提是具有显著性.
如果自变量里面的分类变量是只有两个分类的,那你就把它跟其他定量自变量一起挪到自变量对话框就可以的如果分类变量超过两个分类,有3个或以上时,需要实现设定哑变量或者是叫做虚拟变量.这个需要自己重新编码,就
建议使用逐步回归,这样可以排除不显著的变量
如果是非常不显著,建议删除,其它情况比如15%的水平下是显著的,建议保留,这得根据实际问题来.可以试着先将最不显著的剔除掉,再看看方程,也许就会出现显著系数增多的情况,建议一个个删除.
正相关的话,用相关分析就可以.或者就是在回归分析中看那个系数,系数是正的,并且后面的P值是显著的,不仅说明他们是正相关,还可以说明A的变化会给B带来怎么样的变化
Analyze->Regression->Multinomiallogistic,自变量(Factors)、因变量放好,再设置一下就OK.logistic回归只是针对因变量是分类变量,对自变量是哪种类
表4.22的结果是以“工作绩效”为结果变量,以“心理资本的四个维度为自变量,选用stepwise的方法进行回归分析,所得的结果为四维度均纳入回归模型;所对应的指标:R的平方(决定系数)deltaR的平
看你这个X应该是有4个分类的,那么生成g-1=3个哑变量,所以是X1_1-X1_3.但要注意的是在做logistic回归的时候同一变量的所有哑变量应该是同时引入、同时剔除出模型.
我暑假做的一篇论文就是用Logistic模型做的,用的SPSS17.0,都是自学的说(我开学大四,我们学校本科阶段不教计量经济学和SPSS软件,比较苦逼),废话不多讲,直接上主题.根据我两个月来的理解
能做回归.设成LNp/1-p形式因为p的范围是0--1,不能做回归,设成LNp/1-p形式负无穷到正无穷.就可以了.
(1)如果六大类分类变量“教育程度”,“文盲”,“小学”,“初中”,“高中”,“大学”,“大学及以上,很明显(6-1)=5个虚拟变量.(2),如果你认为太多的虚拟变量,可以结合分类,如“文盲”,“小学
一般可以用统计软件中的逐步回归方法,可以自动把有意义的变量纳入到回归模型里面;也可以先做单变量的回归,然后把单变量分析有意义的自变量都纳入到回归模型里,做多元回归,但是在临床或者实际上有关联的重要观察
有什么怎么办的?那结论就是不大了啊,你还要纠结什么?非要把女人说成男人吗?