若 AB为3阶方阵,且 A=2,B=2 ,则 -2A= , , .
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:36:03
若AB=0,则说明B的列向量都是AX=0的解因为r(B)=n,所以AX=0至少有n个线性无关的解设解集为S,则r(S)=n-r(A)>=n即r(A)=0所以r(A)=0即A=0
(AB)^2=E,只能得到(AB)^(-1)=AB,(BA)^(-1)=BA等不到AB=BA.一般可交换相乘的:互为逆矩阵;方阵乘以数量阵也得不到AB=E.逆矩阵等于原阵的常见.举个例子吧010001
|B|相当于一个常数,||B|A|=|-2A|=(-2)^3|A|=-8
|AB|=|A||B|=2*3=6.
由2A-B-AB=E及A^2=A得A+A^2-AB-B=E,所以(A-B)(A+E)=E,由此知,A-B可逆,且其逆为A+E.
(B)=3啊!有结论r(AB)小于等于min{r(A),r(B)}而B是三阶矩阵所以r(B)=3
A+B+AB=0(I+A)(I+B)=-I即I+A可逆,逆矩阵为-(I+B).因此(I+B)(I+A)=-I即A+B+BA=0所以AB=BA
选B因为若|A|不等于0,则A可写成一系列初等矩阵的乘积,AB相当于对B作一系列初等变换,初等变换不改变矩阵的秩,所以AB同B有相同的秩,但是,由于AB=0,所以其秩为0,而B不等于0,所以其秩至少为
由AB=A+B,有(A-E)(B-E)=AB-A-B+E=E.A-E与B-E互为逆矩阵,于是也有(B-E)(A-E)=E.展开即得BA=A+B=AB.
由A可逆,且AB=0等式两边左乘A^-1得A^-1AB=A^-10即B=0所以(A)正确
因为AB=0,则B的列向量都是齐次线性方程组AX=0的解.(知识点)又因为B不等于0,所以B至少有一列是非零列向量,这个列向量是AX=0的解.即AX=0有非零解,故A的行列式等于0.(知识点,A为方阵
AB=0,则B的列向量都是Ax=0的解因为B≠0,所以Ax=0有非零解,所以|A|=0.同理.AB=AC即A(B-C)=0若能推出B=C则Ax=0只有零解,所以|A|≠0|A|≠0r(A)=nAx=0
又是没悬赏的哈AB=0说明B的列向量都是齐次线性方程组Ax=0的解而B≠0说明Ax=0有非零解所以|A|=0,即A不可逆
我只说简单的步骤,你可以自己试着推一下.(1)n阶方阵可以化成上三角阵和一些初等矩阵的乘积.(2)证明初等矩阵的乘积的行列式等于他们各自行列式的乘积.(3)证明上三角阵和上三角阵的乘积的行列式等于他们
A是秩为1的三阶方阵,所以Ax=0的通解有3-1=2个向量,而AB=0所以矩阵B中的列向量都满足方程Ax=0故Ax=0的通解为c1*(1,0,1)^T+c2*(0,1,0)^T,c1、c2为常数
BA=A+BB=BA-AB=(B-I)A(I=identitymatrix)(B-I)^(-1)*B=(B-I)^(-1)*(B-I)*A(B-I)^(-1)*B=A(B-I)^(-1)*B*B=AB
因为|AB|=|A||B|=|B||A|=|BA|所以4正确.
不一定成立举反例就行了