若 证明|un|=|a|. 并举例说明,数列|un|收敛时
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 05:32:19
由limun=a,知对于任意的e>0,存在自然数k0,使得n>k0时,有|un-a|k0时,||un|-|a||小于等于|un-a|
其实只需试着写两项就能发现关键了.那个级数写出来是-(U[1]+U[2])+(U[2]+U[3])-(U[3]+U[4])+...除了U[1]以外的项都两两消掉了.形式化的写出来是这样.考虑级数∑{1
limUn=a由定义,得到:任意ε>0,存在N,当n>N,有|Un-a|
∵limUn=a∴根据极限定义知,对任意ε>0,存在N>0,当n>N时,有│Un-a│
你好!lim(n→+∞)Un^(1/n)=lim(n→+∞)n^(1/n)/lnn=lim(n→+∞)1/lnn=0所以原级数收敛
∵lim(n趋于无穷)Un=a即对于任意e>0,存在N,当n>N时,有|Un-a|
你有问题也可以在这里向我提问:
把邮箱留下,我把课件发给你
1、||Un|-|a||≤|Un-a|,用定义还是夹逼准则皆可2、极限是0.|xn|≤1/n
∵limUn=A>0∴存在常数A,对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时,不等式|Un-A|<ε都成立,|U(n+1)-A|2,取ε<A-2,当n>N时,不等式|[U(n
参考例题:证明:如果正级数∑Un收敛,则∑Un^α(α>1)收敛答案:∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛
limun=a等价于:任意ε>0,存在N,使得当n>N时,|un-a|0,存在N,使得当n>N时,|(un-a)-0|
在证明这个命题之前,我们先介绍一个关于正项级数的性质:若发散的正项级数∑Qn的一般项Qn单调递减且有极限limQn=0,则对于任意的ε>0和正整数n,必存在整数p≥0使得∑Qi>ε(注:此处求和指标中
取ε=a-b>0,则存在N>0,使当n>N时|un-a|所以-ε则un>a-ε=b.
1-cos(a/根号n)与a/2n等价.因此,当a=0时,当n趋于无穷大时,通项不趋于零,故级数不收敛.当a不等于0时,因∑a/2n,不收敛,所以级数不收敛.综合,可得,级数不收敛.
下面所有lim均指n趋于正无穷大时由limUn=a,则任取ε>0,存在N,使得任意n>N有|Un-a|N有||Un|-|a||
你给的分太高了,以后不要弄这么高的悬赏分了,这个我可以告诉你.只要证明单调有界就可以了.先证有界:(其实你自己可以先把这个极限求出来.对于un=√(a+un-1)两边求极限,设limun=x,则x=√
这是错的.比如Un=1/n
额,终于有人提问了,咱们敬爱的老师要暗暗自喜了.0***aa_1rba11lbb_1lab1_lcc_1rhaltc11ldd_1rdd1_ra
拿你这题来说等式右边凑出一个k*E等式左边凑出一个(A+E)(A+mE)既(A+E)(A+mE)=kE然后拆开:A^2+(m+1)A+mE-kE=0与A^2-A=0比较系数得m+1=-1m-k=0求出