若(1-m)² mn-2=-c²

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:58:49
若(1-m)² mn-2=-c²
已知m-n=2,mn=1,求多项式(2mn+2m+3n)-(3mn+2n-2m)-(m+4n+mn)的值

(2mn+2m+3n)-(3mn+2n-2m)-(m+4n+mn)先去括号=2mn+2m+3n-3mn-2n+2m-m-4n-mn合并同类项=-2mn+3m-3n=-2mn+3(m-n)把m-n=2,

若m-n=4,mn=-1,求代数式(9-2mn+2m+3n)-(3mn+2n-2m)-(m+4n+mn)的值

(9-2mn+2m+3n)-(3mn+2n-2m)-(m+4n+mn)=9-2mn+2m+3n-3mn-2n+2m-m-4n-mn=9-6mn+3m-3n=9-6mn+3(m-n)=9-6×(-1)+

若m-n=4,mn=-1,求(-2mn+2m+3n)-(3mn+2n-2m)-(m+4n+mn)的值

(-2mn+2m+3n)-(3mn+2n-2m)-(m+4n+mn)=-2mn+2m+3n-3mn-2n+2m-m-4n-mn=(-2mn-3mn-mn)+(2m+2m-m)+(3n-2n-4n)=-

若m-n=2,mn=1,则多项式(-2mn+2m+3n)-(3mn+2n-2m)-(m+4n+mn)的值是______.

原式=-2mn+2m+3n-3mn-2n+2m-m-4n-mn=3(m-n)-6mn=3×2-6×1=0.

先化简(m/m-n-n/m+n+2mn/m²-n²)²÷m²+mn/m,若m=1

=[m(m+n)/(m^2-n^2)-n(m-n)/(m^2-n^2)+2mn/(m^2-n^2)]÷(m^2+mn)/m=(m^2+mn-mn+n^2+2mn)/(m+n)(m-n)÷(m+n)=(

若m-n=4,mn=-1求(9-2mn+2m+3n)-(3mn+2n-2m)-(m+4n+mn)

先合并同类项,得3(m-n)-6mn+9,代入已知数据,有结果27

正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两端在BC、CD上,若△AED与以M、N、C为顶点的三角形相似

因为三角形AED相似于三角形MNC所以AD/NC=AE/MC=DE/MN或AD/MC=AE/NC=DE/MN(1)若AD/NC=AE/MC=DE/MN则因为正方形ABCD的边长为2,AE=EB.所以D

若m-n=4,mn=-1,求(-2mn+2m+3n)-(3mn+2n-2m)-(m+4n+mn)的值

(-2mn+2m+3n)-(3mn+2n-2m)-(m+4n+mn)=-2mn+2m+3n-3mn-2n+2m-m-4n-mn=(-2mn-3mn-mn)+(2m+2m-m)+(3n-2n-4n)=-

若m-n=4,mn=-1,求代数式(9-2mn+2m+3n)-(m+4n+mn)的值

(9-2mn+2m+3n)-(m+4n+mn)=9-2mn+2m+3m-m-4n-mn=9-mn+(m-n)=9-(-1)+4=14

如图:知:AM⊥MN,BN⊥MN,垂足分别为M,N,点C是MN上使AC+BC的值最小的点.若AM=3,BN=5,MN=1

作A点关于直线MN的对称点A′,连接A′B交MN于C,则AC+BC=A′C+BC=A′B,A′B就是AC+BC的最小值;延长BN使ND=A′M,连接A′D,∵AM⊥MN,BN⊥MN,∴AA′∥BD,∴

若M=3X的2次方-5X+2,N=2X的2次方-5X+1,则M、N的大小关系是 ( ) A.M>N B.M=N C.MN

M-N=3X的2次方-5X+2-2X的2次方+5X-1=x²+1>0M>N答案:A.M>N再问:.效率吗再答:绝对正确

已知m-n=3,mn=-1,求多项式-2mn+2m+3n-3mn-2n+2m-4n-m-mn的值

-2mn+2m+3n-3mn-2n+2m-4n-m-mn=-6mn+3m-3n=-6mn+3(m-n)=6+9=15

化简:(-n/m)÷n/m^2-m的结果是( )A.-m-1 B.-m+1 C.-mn+m D.-mn-n

(-n/m)÷n/(m^2-m)=(-n/m)*(m^2-m)/n=-(m-1)=1-m选B

若m+n=5,mn=-6,则(m+n)2 −4mn

∵m+n=5,mn=-6,∴(m+n)2 −4mn=52-4×(-6)=25+24=49,故答案为:49.

-2(mn-3m平方)-{m平方-5(mn-m平方)+2mn,其中m=1,n=-2

-2(mn-3m平方)-{m平方-5(mn-m平方)+2mn},其中m=1,n=-2=-2mn+6m^2-m^2+5(mn-m^2)-2mn=-2mn+6m^2-m^2+5mn-5m^2-2mn=mn

若m-n=4,mn=-1,求(-2mn+m+n)-(3mn+5n-5m)-(m+4n-3mn)的值

已知mn=-1,m-n=4则(-2mn+m+n)-(3mn+5n-5m)-(m+4n-3mn)=-2mn+m+n-3mn-5n+5m-m-4n+3mn=-2mn+5m-8n=2+20-3n=22-3n

若M-N=5,MN=-2,则(N-M)的平方-4MN=

(N-M)²-4MN=5²-4*(-2)=25+8=33

分式m-2n/m^2-2mn=1/()

(m-2n)/(m^2-2mn)=(m-2n)/[m(m-2n)]=1/m

若m、n满足|2m+n|+(n-2)=0,则mn的值等于 A、-1 B、1 C、2 D、-2

|2m+n|+(n-2)²=0∴2m+n=0n-2=0∴m=-1n=2∴mn=-2选D