若2a b=12 a,b大于等于0求3a 2b的最大值和最小值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 20:00:44
(a-b)x>ab(a+b)当a=b时不等式化为0x>2a^3所以对于这个式子因为无论x取任何值,左边都是0所以当a≤0时,x取任何值上式都成立当a>0时,x取任何值上式都不会成立,也就是无解
因为A的绝对值是5,那么A=5或A=-5因为B的绝对值是2,那么B=2或B=-2ab的积可能是5乘以2=105乘以-2=-10-5乘以2=-10-5乘以-2=10因为0大于ab所以符合要求的只有5乘以
(a+b)/2-√ab=(a+b-2√ab)/2=(√a-√b)^2/2≥0所以,(a+b)/2≥√a
(a+2)^2+(b+2)^2=a^2+b^2+4(a+b)+8=a^2+b^2+12a^2+b^2>=(a+b)^2/2∴a^2+b^2+12>=1/2+12=12.5补充:a^2+b^2>=(a+
/>√a
什么垃圾题目!a都小于等于零了ab肯定小于等于零啊根号下ab只能为零了.用假设假设b=0那带进去a>=0与题意不符!假设a=0b>=0符合所以b/2>=0恒成立~
a>0,b>0,a+b>=2(ab)^(1/2),2(ab)^(1/2)代表2乘以根号ab.a+b+1/(ab)^(1/2)>=2(ab)^(1/2)+1/(ab)^(1/2),设(ab)^(1/2)
大于,因为a+b>=2根号ab.说明a,b都>=0,所以a2+b2>=2ab再问:太给力了,你的回答完美解决了我的问题!
因为:(根号a+根号b)的平房=a+b+2根号ab又因为:a、b均为正数所以:(根号a+根号b)的平房=a+b+2根号ab>=0又因为a+b=m待入移项所以得结果啦~
a=b=c=4带进去就不对
a=1b=21-2×2+1=-2
若a/b小于0,或无实数解(b=o),则ab小于0.
ab大于等于a+b+1即ab≥a+b+1即a+b+1≤ab≤【(a+b)/2】²即a+b+1≤【(a+b)/2】²令t=a+b,则t>0则t+1≤【t/2】²=1/4*t
a的绝对值等于5,a可能是-5,或者5b=-2,因为5*-2=-10小于0,a是-5*-2=10大于0,数字就是a-5,b-2,a+b=-5+-2=-7求采纳
A+B=-5-2=-7
a>0,b>0所以原式=√(ab)√b²-2√(ab/b²)=b√(ab)-(2/b)√(ab)=[(b²-2)/b]√(ab)
晕倒,这要是想求出准确数字,肯定还有其他条件追问:回答:根号2/2追问:.回答:后面直接平方,再开方,ok
(1)若a+|a|=2a,则a大于等于0如果a和a的绝对值等于2a,则a大于等于零(2)若ab大于0,则ab=|a|乘|b|如果a和b的乘积大于零,则a和b的乘积也等于a的绝对值和b的绝对值的乘积
这个题目可以直接把“均值不等式”当作已知的基本定理而直接证明.我这里给出更基本一些的方法,即假设我们干脆没听说过均值不等式.首先给出一个因式分解公式:(符号^表示乘方)x^3+y^3+z^3-3xyz
假设a=b=2,满足题目条件a>0,b>0,则a^3+b^2=8+4=12;a^2b+ab^2=8+8=16;所以a^3+b^2<a^2b+ab^2.所以,你的题目有问题.