若A,B,C均为n阶矩阵,I为n阶单位矩阵,且ABC=I,则下列矩阵乘积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 11:54:10
A,B满足上述条件称为同时对交化.当且仅当A,B可交换,A,B可同时对角化.具体的证明,如果C^(-1)AC与C^(-1)BC均为对角矩阵,则C^(-1)ACC^(-1)BC=C^(-1)BCC^(-
是A,D可逆吧设H=ABCD一方面有E0-CA^-1E乘H=AB0D-CA^-1B所以|H|=|A||D-CA^-1B|.另一方面H乘E0-D^-1CE=A-BD^-1CB0D所以|H|=|D||A-
终于看明白了,稍等啊再问:则B必为()然后四个选项ABCD选哪个?不好意思括号没打再答:矩阵A是正定矩阵,则它一定是可逆矩阵,与可逆矩阵相似的矩阵一定也是可逆矩阵。故选C.与实对称矩阵相似的矩阵未必是
(D)正确.联立方程组Ax=0Bx=0则系数矩阵的秩r(A;B)
充分性A^2=A0.25(B+I)^2=1/2(B+I)(B+I)^2=2(B+I)B^2+BI+IB+I=2B+2IB^2+2B+I=2B+2IB^2=I必要性若B^2=IA^2=0.25(B+I)
A+B=AB,所以(A-I)(B-I)=I,说明A-I与B-I互为逆矩阵,设它们为X,Y,即A=I+X,B=I+Y,X与Y互逆,所以,AB=(I+X)(I+Y)=I+X+Y+XY=2I+X+Y,BA=
∵C是n阶可逆矩阵∴C可以表示成若干个初等矩阵之积,即C=P1P2…Ps,其中Pi(i=1,2,…,s)均为初等矩阵.而:B=AC,∴B=AP1P2…Ps,即B是A经过s次初等列变换后得到的,又初等变
由于C可逆,所以r(AC)=r(A)即有r=r1故(C)正确.
因为n=r(In)=r(AB)
A,B都可逆,那么A和B的加减、数乘、矩阵乘、求逆、转置的结果都是可逆矩阵:(A-B)^-1=(A^-1)-(B^-1)(AB)^-1=B^-1A^-1(AB^-1)^-1=BA^-1
根据方阵行列式运算满足:|AB|=|A||B|有:|C|=|AB|=|A||B|若B为奇异阵,即|B|=0,则有|C|=|A||B|=0,即C为奇异阵.
这个题有点难度.经济数学团队帮你解答.请及时评价.
BX=C-AB^(-1)BX=B^(-1)*(C-A)X=B^(-1)*(C-A)
设X为任意列向量X'(A+B)X=X'AX+X'BX>0所以A+B为正定矩阵
1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值
A、B相似,说明存在可逆的P,A=PBP逆B正交,说明B'=B逆,B'表示转置所以|A|²=|A²|=|AA|=|PB(P逆P)BP逆|=|P||P逆||B||B|=|P|*1/|
矩阵的乘法不满足交换律所以AB-CA和(B-C)A一般不相等
证明:设α为k维列向量,是CX=0的解,即有Cα=0.则ABα=0.(*)因为r(A)=n所以AX=0只有零解.由(*)知Bα=0.(**)又因为r(B)=k所以BX=0只有零解.由(**)知α=0.
如果知道Laplace展开定理,直接对前m行展开即可如果知道行列式乘积定理,可以做分解[AB;0C]=[IB;0,C]*[A0;0;I]对[IB;0,C]按第一列展开并归纳,对[A0;0;I]按最后一