若an收敛,则an²收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:02:16
用比较判别法证明.经济数学团队帮你解答.请及时评价.
未必.例如 an=[(-1)^n]/√n,则交错级数∑an收敛,但级数 ∑an^2=Σ(1/n)是调和级数,是发散的.
若∑(an平方)收敛,证明∑(an/n)必收敛证明,∑(an)^2收敛,∑(bn)^2=∑(1/n)^2收敛(p级数p>1时收敛)所以∑|anbn|≤∑(1/2)((an)^2+(bn)^2)收敛(因
(an+bn)^2
算术几何均值不等式:|an|/n
如:an=n²,发散的,an+bn=1/n,是收敛的,此时bn=-n²+(1/n)还是发散的.
可能是你的表达有误,按你的叙述,结论不对.举个例子,an=1/(n^2),显然∑an是收敛的.然而,(an)^n->1,所以∑(an)^n是发散的.再问:请问一下(an)^n->1an既然是一个属于(
不一定,只有当级数an,bn都是正项级数级数时柯西乘积才收敛如果an=[(-1)^n]/√n,bn=2*[(-1)^n]/√nan*bn=2/n,是发散的再问:∑an=∑[(-1)^n]/√n,∑bn
不妨设这个数单增,即a1=ank>ak所以数列ak是一个单增有上界的数列,所以收敛.进一步还可以说明ak→
证明:∑an绝对收敛,∴an->0,那么存在N>0,使得n>N时,有|an|1+an>1/2=>1/(1+an)|an|/(1+an)∑|an/(1+an)|∑an/(1+an)收敛
这个是定理啊,大收敛推出小收敛,基本上不用证明.如果非要证也很简单,写一写定义就可以了.再问:老师问我们为什么--我该怎么说求解~再答:你是什么专业的?用e-N定理说一下就出来了。对任意e>0存在N,
那我就只说明收敛吧.证明:a1
根据柯西收敛准则,只需证明|a(n+p)-an|
再问:可以告诉我图片在哪找的吗?|An|-a=|An-a||An-a|=||An|-|a||不懂、、再答:Mathtype自己编辑再问:对不起,智商不够用,An小于0是什么意思?再答:我是分情况讨论,
利用收敛数列必有界.那么有界集合,必有上确界和下确界.收敛数列必有界的证明证明:若an→a,那么有对所有的e>0,存在自然数N,当n>N,时|an-a|N时a-e
设An={ai|i>=n},n=1,2,.An是有界集,所以存在上确界bn,下确界cn.且有:c1
例如an=(-1)^(n-1)/n∑a(2n-1)-a(2n)=∑1/n发散∑an+a(n+1)里两个项是同号的,由于∑an收敛,所以∑2an也收敛,并且任意添加括号后也收敛∑2an=2a1+2a2+
/>再问:不好意思,我写得不清楚,是(根号an)/n还有,an收敛,也可能是a(n+1)\an=1这不严密再答:再问:.....limn/(n+1)*lim根号(a(n+1)/an)前者=1,后者不确