若an级数收敛且an大于0,是否必有limnan=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 08:56:27
这个题很经典的,用基本不等式就可以做.省去下标∑an/n=∑(1/n)*a_n
利用均值不等式可得an/n小于等于(an^2+1/(n^2))/2,而级数an^2和级数1/(n^2)均收敛,所以由比较原则,级数an/n收敛.用手机打出来的,希望你能看懂,关于级数1/(n^p)当p
先从1到N求和:∑n(an-an-1)=NaN-∑an-1这里求和都是从1开始到N再令N趋于无穷,前面的收敛,后面部分也收敛所以整体收敛
未必.例如 an=[(-1)^n]/√n,则交错级数∑an收敛,但级数 ∑an^2=Σ(1/n)是调和级数,是发散的.
若∑(an平方)收敛,证明∑(an/n)必收敛证明,∑(an)^2收敛,∑(bn)^2=∑(1/n)^2收敛(p级数p>1时收敛)所以∑|anbn|≤∑(1/2)((an)^2+(bn)^2)收敛(因
如:an=n²,发散的,an+bn=1/n,是收敛的,此时bn=-n²+(1/n)还是发散的.
可能是你的表达有误,按你的叙述,结论不对.举个例子,an=1/(n^2),显然∑an是收敛的.然而,(an)^n->1,所以∑(an)^n是发散的.再问:请问一下(an)^n->1an既然是一个属于(
这题题目错了.既然题目里面没有说∑an的极限和∑cn的极限相等,又没有说an、bn、cn都大于零之类的条件,是不能判断收敛性的,有可能出现∑bn是震荡的而不是收敛的.
n充分大时有|an|1/2从而|1/1+an|
证明:∑an绝对收敛,∴an->0,那么存在N>0,使得n>N时,有|an|1+an>1/2=>1/(1+an)|an|/(1+an)∑|an/(1+an)|∑an/(1+an)收敛
可以证明a_n一定收敛到0否则,存在e,对任意N,都存在n>N,使得a_n>e这时,n*a_n>n*e>N*e而N是任意的,所以{n*a_n}就不是有界的,矛盾!故a_n一定收敛到0
马上写来再答:设级数∑An收敛于bn(An-A(n+1))=nAn-(n+1)A(n+1)-A(n+1)Sn=∑(k=1,n)[kAk-(k+1)A(k+1)-A(k+1)]=A1-(n+1)A(n+
收敛根据定义,|an|=|(-1)^nan|再问:Yimoxilong是什么?再答:无穷小反写的3看下书上的定义
其实只要裂项就可以了,然后利用单调有下界的正数列必有极限就可以证明了,具体的办法见图中所示:
Sn是级数的部分和,则S(2n)有极限,记为limS(2n)=s.于是limS(2n+1)=limS(2n)+a(2n+1)=limS(2n)+lima(2n+1)=s.故级数收敛.
由于有0
例如an=(-1)^(n-1)/n∑a(2n-1)-a(2n)=∑1/n发散∑an+a(n+1)里两个项是同号的,由于∑an收敛,所以∑2an也收敛,并且任意添加括号后也收敛∑2an=2a1+2a2+
再答:如果你认可我的回答,敬请及时采纳,在右上角点击“采纳回答”即可。再问:能不能再帮我解决几个问题?再问:再答:你发提问吧,我看到会解答的再问:第六题和第七题,很急啊,再答:傅里叶啊,计算量太大了再
第一题有不错的解答了...主要写了你补充的题