若A为3阶方阵,且|A|=1 2,则|-A|=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 03:13:10
若A为3阶方阵,且|A|=1 2,则|-A|=
设A为三阶方阵,且|A|=-3,求|-3A|

|-3A|=(-3)^3*|A|=(-3)^4=81

线性代数:设A为n级方阵,且|A|=2求|-3A|

|kA|=k^n|A|所以|-3A|=(-3)^n|A|=2*(-3)^n

设A为4阶方阵,且|A|=3,并且A^*为A的伴随矩阵,则|2A^-1|-|A^*|=

AA*=|A|A*=|A|A^-1|2A^-1|-|A^*|=|2A^-1|-||A|A^-1|=|2A^-1|-|3A^-1|=2^4|A^-1|-3^4|A^-1|=-65|A^-1|=-65/3

设A为N阶方阵,且A-E可逆,A^2+2A-4E=0,求A+3E的逆方阵

将A^2+2A-4E=0变化为A^2+2A-3E=E,即(A+3E)*(A-E)=E,因为(A-E)可逆,所以A+3E的逆方阵为(A-E)^-1

已知A为n阶方阵且A^2=A,求A的全部特征值.

1.设a为矩阵A的特征值,X为对应的非零特征向量.则有AX=aX.aX=AX=A^2X=A(AX)=A(aX)=aAX=a(aX)=a^2X,(a^2-a)X=0,因X为非零向量,所以.0=a^2-a

已知A为3阶方阵,且 |A |=1/2.则 |(2A)* |=

知识点:1.(kA)*=k^(n-1)A*2.|kA|=k^n|A|3.|A*|=|A|^(n-1)|(2A)*|=|2^(n-1)A*|=2^[n(n-1)]|A*|=2^[n(n-1)]|A|^(

已知A为3阶方阵,且IAI=3,求IA*I

知识点:|A*|=|A|^(n-1)所以有:|A*|=|A|^(3-1)=3^2=9.

设A为3阶方阵,则A为可逆阵当且仅当R(A)=?

A为可逆阵,则它为满秩.因为A为3阶.所以R(A)=3;

设A为3阶方阵,且|A^-1|=2/5,则|(2A)^-1-A^*|=

昨天在的怎么没收到你这个问题A*=|A|A^-1=5/2A^-1|(2A)^-1-A*|=|1/2A^-1-5/2A^-1|=|-2A^-1|=(-2)^3|A^-1|=-8*2/5=-16/5.

设A为n阶方阵,且A=A^2;,则(A-2E)^-1

A=A^2A^2-A=0A^2-2A=-AA(A-2E)=-AA-2E=-E(A-2E)*(-E)=E所以:(A-2E)^-1=-E

设A是n阶方阵,且|5A+3E|=0.则A必有一个特征值为

因为|5A+3E|=0,所以|A-(-3/5)E|=0,从而-3/5是A的一个特征值.

已知3阶方阵A的特征值为2,3,a,且|A|=6,则a=

a=6÷2÷3=3÷3=1再问:线性代数要补考但是不会能不能帮我做下卷子答案,急用,谢谢

若A为三阶方阵,且|A+2E|=0,|2A+E|=0,|3A–4E|=0,则|A|=

根据特征值的意义以及性质,|A+2E|=0可得,有一特征值-2  (特征值的定义)|2A+E|=0 可得,有一特征值-1/2|3A–4E|=0 可得,有一特征值

设A为三阶方阵,且|A|=2,A*为A的伴随矩阵,|3A*|=?

A*=|A|A^(-1)=2A^(-1)由|A|=2知|A^(-1)|=1/2|3A*|=|6A^(-1)|=6³|A^(-1)|=6³×1/2=108A^(-1)表示A的逆矩阵

设 /A/为三阶方阵,且已知/A/=-2 ,则/3A /的值为多少

3A是在每个矩阵元素上乘以3,这样在计算行列式时,由于每个元素是原来的3倍,所以一个n阶方阵的行列式的值变为原来的3^n倍.在本题中,n=3,所以/3A/=3^3*(-2)=-18说的详细点,行列式是

设A 为三阶方阵且|A|=-2,则|3A²|=?

因为|kA|=k^3|A|,所以|3A²|=3^3*|A|²=9*(-2)²=9*4=36.

设A为三阶方阵,且|A|=-2,求|-2A|

|-2A|=(-2)^3*|A|=(-2)^4=16